注册 登录 进入教材巡展
#

出版时间:2022-01

出版社:化学工业出版社

以下为《机器视觉与数字图像处理基础(HALCON版)(配套电子课件)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
试读
  • 化学工业出版社
  • 9787122399847
  • 1版
  • 413126
  • 48251000-5
  • 16开
  • 2022-01
  • 200
  • 工学
  • 机械工程
  • TP302.7;TN911.73
  • 机械类
  • 本科
作者简介
王强,成都工业学院智能制造学院教师,副教授,一直从事图像处理与机器视觉相关的研究和应用工作,主持实施多项与企业相关的机器视觉项目,主持或主研多项纵向课题研究,具有丰富的图像处理和机器视觉实践经验
查看全部
目录
第1章 绪论
1.1 机器视觉的概念 2
1.2 机器视觉的组成 2
1.3 机器视觉系统的特点 3
1.4 机器视觉系统的应用领域 4
1.4.1 在工业生产中的应用 4
1.4.2 在农产品检测中的应用 5
1.4.3 在医学中的应用 6
1.4.4 在军工以及制导方面的应用 6
1.4.5 在其他方面的应用 7
习题 7

第2章 机器视觉图像采集
2.1 光源 9
2.1.1 电磁辐射 9
2.1.2 光源类型 10
2.1.3 光源的形状 11
2.1.4 光源照明方式 14
2.2 镜头 17
2.2.1 焦距 17
2.2.2 光圈 18
2.2.3 其他镜头参数 19
2.3 摄像机 19
2.3.1 CCD 芯片尺寸 20
2.3.2 分辨率 21
2.3.3 帧率与曝光时间 21
2.3.4 其他摄像机参数 22
习题 22

第3章 数字图像处理基础
3.1 数字图像的表示 25
3.2 数字图像分类 25
3.2.1 彩色图像 26
3.2.2 二值图像 26
3.2.3 灰度图像 27
3.2.4 索引图像 29
3.3 数字图像的格式 30
3.3.1 BMP 格式 30
3.3.2 JPEG 格式 30
3.3.3 PNG 格式 30
3.3.4 GIF 格式 30
3.3.5 TIFF 格式 31
3.4 数字图像处理的一般步骤和方法 31
3.5 图像性质 32
3.5.1 图像的通道 32
3.5.2 图像的分辨率 32
3.5.3 图像的邻域 32
3.5.4 图像的连通域 33
3.5.5 像素之间的距离 33
3.5.6 图像直方图 34
3.5.7 图像中的熵 35
3.5.8 图像中的其他统计特征 36
习题 36

第4章 HALCON 简介
4.1 HALCON 介绍 39
4.2 HALCON 界面认识 39
4.2.1 菜单栏 41
4.2.2 工具栏 41
4.2.3 子窗口 42
4.3 HALCON 的数据类型 44
4.3.1 HALCON 的 Image 图像 45
4.3.2 Region 区域 47
4.3.3 XLD 轮廓 49
4.3.4 Tuple 元组 50
4.4 HALCON 控制语句 55
4.4.1 if 条件语句 55
4.4.2 while 循环语句 56
4.4.3 for 循环语句 57
4.4.4 switch 分支条件语句 57
4.4.5 中断语句 58
4.5 第一个机器视觉例子 59
习题 61

第5章 图像增强
5.1 灰度变换 63
5.1.1 线性变换 63
5.1.2 分段线性变换 64
5.1.3 对数变换 64
5.1.4 幂次变换 65
5.2 直方图变换 67
5.2.1 直方图均衡化 67
5.2.2 直方图规定化 69
5.3 图像平滑处理 72
5.3.1 图像卷积运算概念 72
5.3.2 均值滤波 74
5.3.3 中值滤波 75
5.3.4 高斯滤波 76
5.3.5 双边滤波 77
5.4 代数运算 79
5.4.1 图像加法 80
5.4.2 图像减法 80
5.4.3 图像乘法 80
5.4.4 图像除法 81
5.5 图像逻辑运算 82
习题 84

第6章 图像几何变换
6.1 图像插值 87
6.1.1 最近邻插值 87
6.1.2 双线性插值 88
6.1.3 双三次插值 89
6.2 仿射变换 90
6.3 透视变换 93
6.4 极坐标变换 94
习题 95

第7章 图像锐化与边缘检测
7.1 图像梯度的概念 98
7.2 一阶微分算子锐化与边缘检测 99
7.2.1 水平微分和垂直微分算子 99
7.2.2 Kirsch 算子 102
7.2.3 Sobel 算子 102
7.2.4 Prewitt 算子 103
7.2.5 Roberts 算子 104
7.3 二阶微分算子 105
7.3.1 Laplacian 算子 106
7.3.2 LOG 算子 107
7.3.3 DOG 算子 107
7.4 Canny 算子 108
习题 109

第8章 数学形态学处理
8.1 形态学运算基础 112
8.2 二值图像形态学运算 113
8.2.1 膨胀运算 114
8.2.2 腐蚀运算 115
8.2.3 开运算和闭运算 117
8.2.4 击中击不中变换 119
8.3 灰度图像数学形态学运算 122
8.3.1 灰度图膨胀与腐蚀 122
8.3.2 灰度图开运算与闭运算 123
8.3.3 形态学梯度 124
8.3.4 顶帽 124
8.3.5 底帽 124
8.4 形态学运算的应用 126
8.4.1 二值图形态学应用 126
8.4.2 灰度图形态学应用 128
习题 131

第9章 图像分割
9.1 基于灰度值的阈值分割 134
9.1.1 全局阈值分割 134
9.1.2 局部阈值分割 138
9.2 区域生长算法 141
9.3 分水岭算法 142
9.4 其他分割算法介绍 145
习题 146

第10章 图像模板匹配
10.1 图像金字塔 148
10.1.1 高斯金字塔 148
10.1.2 拉普拉斯金字塔 149
10.2 基于灰度值的匹配 150
10.3 带旋转与缩放的匹配 156
10.4 基于边缘的匹配 156
10.5 形状匹配 157
10.6 基于特征的匹配 161
10.6.1 基于矩的匹配方法 161
10.6.2 基于特征点的匹配方法 163
习题 163

第11章 摄像机标定
11.1 标定原理 166
11.1.1 坐标系之间的转换关系 167
11.1.2 镜头畸变 169
11.2 标定过程 170
习题 175

第12章 机器视觉应用实例分析
12.1 点阵字符分割与识别 177
12.1.1 确定字符区域 177
12.1.2 分割单个字符 178
12.1.3 字符训练与识别 179
12.2 镜片自动分拣 181
12.2.1 提取凹面镜片区域 182
12.2.2 中心位置查找 183
12.3 布料瑕疵检测 184
12.3.1 彩色图像分解 185
12.3.2 瑕疵区域提取 186
12.4 HALCON 与 C#混合编程实例 188
12.4.1 图像处理算法导出 188
12.4.2 系统设计与算法集成 189
习题 198

参考文献 199
Baidu
map