注册 登录 进入教材巡展
#

出版时间:2020-03-01

出版社:北京理工大学出版社

以下为《非线性分数微分方程理论 Theory of nonlinear fractional-order differential equations》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 北京理工大学出版社
  • 9787568281799
  • 1
  • 365158
  • 65219630-4
  • 平装
  • 小16开
  • 2020-03-01
  • 288
  • 理学
  • 数学
  • O175
  • 数学
  • 高职高专
作者简介
王国涛,男,1980年生,山东青州人,博士,副教授,博士生导师,h-指数(19);山西省“三晋英才”青年优秀人才,印度理工学院(IIT)杰出专家和博士论文评议人,沙特阿卜杜勒阿齐兹国王大学(KAU)科研项目评审专家及特邀顾问; SCI期刊Adv. Differ. Equ.副编委和国际Nonl. Anal. and Appl. Math.成员,主要从事应用非线性泛函分析与非线性微分方程的交叉研究工作。近年来,已承担国家级、省级课题共7项,发表SCI论文近70 篇,10篇SCI论文被ESI 高引收录,论文总被引1400多次,单篇最高被引200多次,研究成果获山西省自然科学奖三等奖(2017,第一完成人)和山西省省高校科学研究优秀成果奖二等奖(2016,第一完成人)各一项、山西省优秀学术论文一等奖1项、二等奖5项。
查看全部
内容简介
非线性分数微分方程是一个十分新颖的课题。本书是作者多年来对非线性分数微分方程研究的一次总结。本书包括了多种类型的非线性分数微分方程、分数积分-微分方程、分数脉冲微分方程和分数微分系统。通过应用非线性泛函分析工具,如单调迭代技巧、上下解方法、不动点理论、不动点指数理论等,本书系统调查了以上所列非线性分数微分方程解存在性的基本理论,包括解的存在性、唯一性、多解性、收敛到解的单调迭代序列和误差估计等。本书向读者展示了应用非线性泛函分析工具处理非线性分数微分方程的基本方法。本书适用于大学数学及其相近专业高年级学生、研究生、工程技术人员以及对本方向感兴趣的研究人员。



Baidu
map