注册 登录 进入教材巡展
#

出版时间:2012-06-01

出版社:高等教育出版社

以下为《Introduction to Complex Networks: Models》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040347821
  • 1
  • 296007
  • 精装
  • 16开
  • 2012-06-01
  • 550
  • 332
  • 工学
  • 计算机科学与技术
作者简介

陈关荣,1981年获中山大学计算数学硕士学位,1987年获美国德克萨斯A&M大学应用数学博士学位。于休斯顿大学任教至2000年,现任香港城市大学电子工程系讲座教授。1996年当选为IEEE Fellow。获2008年国家自然科学二等奖、2010年何梁何利奖、201 1年俄罗斯欧拉奖并获俄罗斯圣彼得堡国立大学荣誉博士学位,获4项IEEE等最佳学术杂志论文奖,是国内外30多所大学的荣誉或客座教授。现任International Journal of Bifurcation and Chaos主编,SCI他引一万六千多次,h指数62,被ISI评定为工程学高引用率研究人员。

 

 

汪小帆,1996年获东南大学工学博士学位。现为上海交通大学电子信息与电气工程学院教授、致远学院常务副院长。近年一直从事复杂网络系统分析与控制研究。获2002年国家杰出青年科学基金、2005年IEEE电路与系统汇刊最佳论文奖、2008年上海市自然科学一等奖和2010年上海市自然科学牡丹奖。

 

 

 

李翔,2002年获南开大学工学博士学位。现为复旦大学信息科学与工程学院教授、电子工程系主任。近年一直从事复杂网络系统控制的理论与应用研究。获2005年IEEE电路与系统汇刊最佳论文奖、2008年上海市自然科学一等奖、2010年上海市青年科技英才奖和2011年霍英东教育基金会高等院校青年教师奖,2009年入选教育部新世纪优秀人才计划。

 

查看全部
内容简介

《复杂网络引论:模型、结构与动力学(英文版)》是为自然科学、数学和工程领域的研究生以及本科高年级学生编写的一本入门教科书,可以作为一个学期教学使用的讲义,也可以作为科研参考书或自学读物。《复杂网络引论:模型、结构与动力学(英文版)》力求正确和准确,但并不刻意采取十分严谨的写法,以期通俗易懂,侧重于主要思想和基本方法的介绍,仅提供启发性的数学支撑,希望具有初等微积分、线性代数和常微分方程的读者能够轻松地学习书中的主要内容。

全书分成两大部分:第一部分是基础理论,包括背景材料和信息并附有适量的练习题,旨在让读者熟悉一些最基本的建模方法和分析技巧。第二部分是应用选题,包括复杂网络在几个代表性领域中的应用研究,这些章节彼此相对独立。最后一章是近年来比较活跃的几个前沿研究课题的简介。各章均附有详细的关键文献,希望能够帮助有兴趣的读者很快地进入这些研究领域。

This book is written as a one-semester introductory text for upper-division undergraduate or first-year graduate students in natural science, mathematics and engineering, or as an edited volume for self-study, or as a handy reference for research.

The book is divided into two parts: Part I Fundamental Theory is a detailed text consisting of three chapters, presenting background information and basic materials needed to learn the subject, with a variety of exercises for illustrating fundamental concepts and familiarizing related modeling and analysis techniques. Part II Applications – Selected Topics contains several selected application-oriented topics, which are all independent of each other, in the sense that one can choose any chapters to teach or to learn individually without referring to the contents of the other chapters in this part. The last chapter of this part provides only outlines of several emerging topics which are believed important and promising, with sufficient numbers of key references provided for interested readers’future studies.

目录

 前辅文
 Part I Fundamental Theory
  Chapter 1 Introduction
   1.1 Background and Motivation
   1.2 A Brief History of Complex Network Research
    1.2.1 The KÄonigsburg Seven-Bridge Problem
    1.2.2 Random Graph Theory
    1.2.3 Small-World Experiment
    1.2.4 Strength of Weak Ties
    1.2.5 New Era of Complex-Network Studies
   1.3 Some Basic Concepts
    1.3.1 Graph Representation of Networks
    1.3.2 Average Path Length
    1.3.3 Clustering Coe±cient
    1.3.4 Degree and Degree Distribution
    1.3.5 Statistical Properties of Some Real-World Complex Networks
   Problems
   References
  Chapter 2 A Brief Introduction to Graph Theory
   2.1 What is a Graph?
   2.2 Notation, De¯nitions and Preliminaries
   2.3 Eulerian and Hamiltonian Graphs
    2.3.1 Eulerian Graphs
    2.3.2 Hamiltonian Graphs
    2.4 The Chinese Postman Problem
   2.5 The Shortest Path Length Problem
   2.6 Trees
   2.7 The Minimum Connector Problem
   2.8 Plane Graphs and Planar Graphs
   2.9 Euler Formula for Plane Graphs
   2.10 Directed Graphs
   Problems
   References
  Chapter 3 Network Topologies: Basic Models and Properties
   3.1 Introduction
   3.2 Regular Networks
   3.3 Random-Graph Networks
   3.4 Small-World Network Models
    3.4.1 The WS Small-World Network Model
    3.4.2 The NW Small-World Network Model
    3.4.3 Statistical Properties of Small-World Network Models
   3.5 The Navigable Small-World Network Model
   3.6 Scale-Free Network Models
    3.6.1 The BA Scale-Free Network Model
    3.6.2 Robustness versus Fragility
    3.6.3 Modi¯ed BA Models
    3.6.4 A Simple Model with Power-Law Degree Distribution
    3.6.5 Local-World and Multi-Local-World Network Models
   Problems
   References
 Part II Applications: Selected Topics
  Chapter 4 Internet: Topology and Modeling
   4.1 Introduction
   4.2 Topological Properties of the Internet
    4.2.1 Power-Law Node-Degree Distributions
    4.2.2 Hierarchical Structures
    4.2.3 Rich-Club Structure
    4.2.4 Disassortative Property
    4.2.5 Coreness and Betweenness
    4.2.6 Growth of the Internet
    4.2.7 Router-Level Internet Topology
    4.2.8 Geographic Layout of the Internet
   4.3 Random-Graph Network Topology Generator
   4.4 Structural Network Topology Generators
    4.4.1 Tiers Topology Generator
    4.4.2 Transit-Stub Topology Generator
   4.5 Connectivity-Based Network Topology Generators
    4.5.1 Inet
    4.5.2 BRITE Model
    4.5.3 GLP Model
    4.5.4 PFP Model
    4.5.5 TANG Model
   4.6 Multi-Local World Model
    4.6.1 Theoretical Considerations
    4.6.2 Numerical Results with Comparison
    4.6.3 Performance Comparison
   4.7 HOT Model
   4.8 Dynamical Behaviors of the Internet Topological Characteristics
   References
  Chapter 5 Spreading Dynamics
   5.1 Introduction
   5.2 Epidemic Threshold Theory
    5.2.1 Epidemic Models
    5.2.2 Epidemic Thresholds on Homogenous Networks
    5.2.3 Statistical Data Analysis
    5.2.4 Epidemic Thresholds on Scale-Free Networks
    5.2.5 Epidemic Thresholds on BA Scale-Free Networks
    5.2.6 Epidemic Thresholds on Finite-Sized Scale-Free Networks
    5.2.7 Epidemic Thresholds on Correlated Networks
    5.2.8 Epidemic Thresholds on Some Generalized Scale-Free Networks
    5.2.9 SIR Model of Epidemic Spreading
   5.3 Immunization on Complex Networks
    5.3.1 Random Immunization
    5.3.2 Targeted Immunization
    5.3.3 Acquaintance Immunization
   5.4 Computer Virus Spreading over the Internet
    5.4.1 Random Constant Spread Model of the Code-Red Worm
    5.4.2 A Compartment-Based Model of Computer Worms
    5.4.3 Spreading Models of E-mail Viruses
    5.4.4 E®ects of Computer Virus on Network Topologies
   5.5 Other Spreading Phenomena on Complex Networks
    5.5.1 Rumors Spreading over Social Networks
    5.5.2 Some Generalized Models of Spreading Dynamics
   References
  Chapter 6 Cascading Reactions on Networks
   6.1 Introduction
   6.2 Dynamic Cascading Failures: Models and Analyses
    6.2.1 Models Based on Node Dynamics
    6.2.2 Models Based on Edge Dynamics
    6.2.3 Hybrid Models Based on Node and Edge Dynamics
    6.2.4 Binary In°uence Model
    6.2.5 Sand-Pile Model
    6.2.6 OPA Model
    6.2.7 CASADE Model
    6.2.8 Other Models
   6.3 Cascading Failures in Coupled Map Lattices
    6.3.1 Cascading Failure Model Based on CMLs
    6.3.2 Cascading Failures on Typical Coupling Lattices
   6.4 Cascading Failures of Interdependent Networks
   References
  Chapter 7 Human Opinion Dynamics
   7.1 Introduction
   7.2 Social Network Topologies and Sociodynamics
   7.3 Social Opinion Formation
    7.3.1 Voter Model
    7.3.2 Galam Majority-Rule Model
    7.3.3 Latan¶e Social Impact Theory
    7.3.4 Sznajd Model
    7.3.5 Virtual Social Game on the Internet
    7.3.6 Online Social Opinion Formation
   7.4 Bounded Con¯dence Models
   References
  Chapter 8 Network Synchronization
   8.1 Introduction
   8.2 Complete Synchronization of Continuous-Time Networks
    8.2.1 Complete Synchronization of General Continuous-Time Networks
    8.2.2 Complete Synchronization of Linearly Coupled Continuous-Time Networks
   8.3 Complete Synchronization of Some Typical Dynamical Networks
    8.3.1 Complete Synchronization of Regular Networks
    8.3.2 Synchronization of Small-World Networks
    8.3.3 Synchronization of Scale-Free Networks
    8.3.4 Complete Synchronization of Local-World Networks
   8.4 Phase Synchronization
    8.4.1 Phase Synchronization of the Kuramoto Model
    8.4.2 Phase Synchronization of Small-World Networks
    8.4.3 Phase Synchronization of Scale-Free Networks
    8.4.4 Phase Synchronization of Non-Uniformly Coupled Networks
   References
  Chapter 9 Network Control
   9.1 Introduction
   9.2 Spatiotemporal Chaos Control on Regular CML
   9.3 Pinning Control of Complex Networks
    9.3.1 Augmented Network Approach
    9.3.2 Pinning Control of Scale-Free Networks
    9.4 Pinning Control of General Complex Networks
    9.4.1 Stability Analysis of General Networks under Pinning Control
    9.4.2 Pinning and Virtual Control of General Networks
    9.4.3 Pinning and Virtual Control of Scale-Free Networks
   9.5 Time-Delay Pinning Control of Complex Networks
   9.6 Consensus and Flocking Control
   References
  Chapter 10 Brief Introduction to Other Topics
   10.1 Network Modularity and Community Structures
   10.2 Human Mobility and Behavioral Dynamics
   10.3 Web PageRank, SiteRank and BrowserRank
   10.4 Recommendation Systems
   10.5 Network Edge Prediction
   10.6 Living Organisms and Bio-Networks
   References
 Index

Baidu
map