注册 登录 进入教材巡展
#
  • #

出版时间:2020-01

出版社:中国铁道出版社

以下为《人工智能概论》的配套数字资源,这些资源在您购买图书后将免费附送给您:
试读
  • 中国铁道出版社
  • 9787113264031
  • 1-1
  • 289442
  • 44253589-4
  • 平装
  • 16开
  • 2020-01
  • 389
  • 272
  • 工学
  • 计算机科学与技术
  • 计算机类
  • 高职
内容简介
人工智能是计算机科学的一个重要分支与应用。目前人工智能主要的研究与开发方向有模拟、
延伸与扩展人类智能的理论、方法、技术及应用系统,涉及的技术与应用包括:大数据思维、知
识表示、专家系统、机器学习、深度学习、机器人技术、图像识别、语音识别和自然语言处理等。
本书系统、全面地介绍了人工智能的相关基本观念与知识,既简明扼要地介绍了这一学科的
基础知识与应用技术,也对自然语言处理、神经网络与深度学习等内容进行了拓展,更辅以实例
作为思维与动手实践的学习支架,帮助读者打好学习人工智能的知识基础。
与本书配套的教学课件等文档可从www.tdpress.com/51eds网站下载。
本书适合作为高等院校相关专业的教材,也可作为对人工智能相关领域感兴趣的读者的学习
目录
第一部分 了解人工智能及其典型应用
第1 章 绪论 ......................................................................................... 003
1.1 人工智能的概念 ................................................................004
1.1.1 人工智能的定义 ........................................................... 005
1.1.2 强人工智能与弱人工智能 ............................................. 006
1.2 人工智能发展历史 ............................................................006
1.2.1 了解图灵和冯·诺依曼 ................................................. 006
1.2.2 通用机器 .................................................................... 007
1.2.3 人工智能学科的诞生 .................................................... 008
1.2.4 人工智能的发展历程 .................................................... 009
1.3 人工智能的研究 ................................................................010
1.3.1 人工智能的研究领域 .................................................... 010
1.3.2 人工智能在计算机上的实现方法.................................... 012
1.4 人工智能的应用领域 .........................................................012
第2 章 智慧城市与智能家居 ................................................................ 017
2.1 智慧城市的概念 ................................................................018
2.2 智慧城市及其他 ................................................................020
2.2.1 智慧城市与数字城市 .................................................... 020
2.2.2 智慧城市与智能城市 .................................................... 021
2.2.3 智慧城市与智慧农业 .................................................... 021
2.3 智慧城市的应用体系 .........................................................022
2.4 智慧交通——智慧城市建设的必经之路 ................................024
2.4.1 智慧交通是智慧城市的建设前提 ................................... 024
2.4.2 轨道交通驾驶系统的发展 ............................................. 025
2.4.3 轨道交通的无人驾驶模式 ............................................. 026
2.5 智能家居 .........................................................................027
2.5.1 家庭自动化 ................................................................. 028
2.5.2 家庭网络 .................................................................... 029
2.5.3 网络家电 .................................................................... 029
2.5.4 智能家居的设计理念 .................................................... 029
第3 章 智慧医疗与公共健康 ................................................................ 033
3.1 数据智慧促进医疗与健康 ...................................................035
3.1.1 循证医学的发展 ........................................................... 035
CONTENTS 目 录
II
人工智能概论
3.1.2 医疗保健新突破 .......................................................... 036
3.1.3 超级大数据的最佳伙伴——搜索 .................................... 038
3.1.4 数据决策的成功崛起 .................................................... 040
3.2 智慧医疗的定义 ................................................................040
3.2.1 智能时代的医疗信息 .................................................... 041
3.2.2 智慧的医疗信息平台 .................................................... 041
3.2.3 医疗体制改革 .............................................................. 042
3.3 智慧医疗的组成 ................................................................042
3.3.1 智慧医院系统 .............................................................. 043
3.3.2 区域卫生系统 .............................................................. 043
3.3.3 家庭健康系统 .............................................................. 044
3.4 健康美好未来 ...................................................................044
第4 章 新零售与客户服务 ................................................................... 049
4.1 智慧新零售 ......................................................................053
4.1.1 动因与政策背景 ........................................................... 054
4.1.2 新零售的新观点 .......................................................... 054
4.2 智能客户服务 ...................................................................055
4.2.1 智能客服如何帮助企业 ................................................. 055
4.2.2 研发智能客服需要克服的困难 ....................................... 056
4.2.3 企业如何布局智能客服................................................. 057
4.3 智能客服时代的人和机器分工 ............................................058
4.3.1 用机器守住第一触点 .................................................... 058
4.3.2 让机器分发个性内容 .................................................... 058
4.3.3 以机器优化人工服务 .................................................... 059
4.4 智能客服——聊天机器人 ...................................................059
4.4.1 聊天机器人系统的组成结构 .......................................... 059
4.4.2 智能客服系统的组成结构 ............................................. 060
第5 章 智慧地球之智慧教育 ................................................................ 063
5.1 关于智慧地球 ...................................................................065
5.1.1 智慧地球战略的主要内容 ............................................. 065
5.1.2 智慧地球的三个重要维度与四个关键问题 ...................... 065
5.2 教育新方向——智慧教育 ...................................................066
5.2.1 智慧教育的定义 .......................................................... 066
5.2.2 智慧校园是智慧教育的一部分 ....................................... 067
5.2.3 建设智慧教室 .............................................................. 068
5.2.4 智慧教学模式 .............................................................. 069
III
目 录
5.3 智慧教育(系统)建设 ......................................................069
5.4 智慧教育的内涵与特征 ......................................................070
5.4.1 智慧教育的内涵 ........................................................... 071
5.4.2 智慧教育的教育特征 .................................................... 072
5.4.3 智慧教育的技术特征 .................................................... 074
第6 章 人工智能与社会发展 ................................................................ 079
6.1 创新发展与社会影响 .........................................................080
6.1.1 人工智能发展的启示 .................................................... 081
6.1.2 人工智能的发展现状与影响 .......................................... 082
6.2 发展人工智能对社会的利与弊 ............................................084
6.3 人工智能时代需要的人才 ...................................................085
6.3.1 社会进步取代了传统劳动 ............................................. 086
6.3.2 新创造的核心工作岗位 ................................................. 086
6.3.3 未来最热门的五个岗位 ................................................. 086
6.4 人工智能与安全 ................................................................088
6.4.1 建立人工智能生态系统 ................................................. 089
6.4.2 人才和基础设施短缺 .................................................... 089
6.4.3 安全问题不容忽视 ....................................................... 090
6.4.4 设定伦理要求 .............................................................. 090
6.4.5 强力保护个人隐私 ....................................................... 091
第二部分 基 础 知 识
第7 章 大数据思维 .............................................................................. 097
7.1 大数据与人工智能 ............................................................099
7.2 思维转变之一:样本= 总体 ...............................................100
7.2.1 小数据时代的随机采样 ................................................. 100
7.2.2 大数据与乔布斯的癌症治疗 .......................................... 101
7.2.3 全数据模式:样本= 总体 ............................................ 102
7.3 思维转变之二:接受数据的混杂性 ......................................102
7.3.1 允许不精确 ................................................................. 103
7.3.2 纷繁的数据越多越好 .................................................... 103
7.3.3 混杂性是标准途径 ....................................................... 104
7.3.4 5% 的数字数据与95% 的非结构化数据.......................... 105
7.4 思维转变之三:数据的相关关系 .........................................106
7.4.1 关联物,预测的关键 .................................................... 106
7.4.2 “是什么”,而不是“为什么” ........................................ 107
7.4.3 通过因果关系了解世界 ................................................. 108
IV
人工智能概论
7.4.4 通过相关关系了解世界 ................................................. 108
第8 章 知识表示 ...................................................................................115
8.1 知识表示的概念 ................................................................123
8.1.1 知识的定义 ................................................................. 123
8.1.2 知识表示方法 .............................................................. 125
8.1.3 表示方法的选择 .......................................................... 126
8.2 图形草图 .........................................................................128
8.3 图和哥尼斯堡桥问题 .........................................................129
8.4 搜索树(决策树) ..............................................................130
8.5 产生式系统 ......................................................................130
8.6 面向对象 .........................................................................131
8.7 框架法 ............................................................................132
8.8 语义网络 .........................................................................133
8.8.1 语义网络表示 .............................................................. 133
8.8.2 知识图谱 .................................................................... 134
第三部分 基于知识的系统
第9 章 专家系统 .................................................................................. 141
9.1 专家系统及其发展 .............................................................144
9.1.1 在自己的领域里作为专家 ............................................. 145
9.1.2 五个技能获取阶段 ....................................................... 146
9.1.3 专家的特点 ................................................................. 147
9.1.4 专家系统的特征 .......................................................... 148
9.1.5 建立专家系统要思考的问题 .......................................... 148
9.2 知识工程 .........................................................................150
9.3 知识获取 .........................................................................151
9.4 专家系统的结构 ................................................................152
9.4.1 知识库 ....................................................................... 153
9.4.2 推理机 ....................................................................... 153
9.4.3 其他部分 .................................................................... 153
9.5 经典的专家系统 ................................................................154
9.5.1 DENDRAL 专家系统 .................................................... 154
9.5.2 振动故障诊断的专家系统 ............................................. 155
9.5.3 自动牙科识别 .............................................................. 155
V
目 录
第10 章 机器学习 ................................................................................ 159
10.1 机器学习的概念 ..............................................................161
10.1.1 机器学习的发展 ......................................................... 161
10.1.2 机器学习的定义 ......................................................... 163
10.2 机器学习的学习类型 ........................................................165
10.2.1 监督学习 .................................................................. 165
10.2.2 无监督学习 ............................................................... 165
10.2.3 强化学习 .................................................................. 166
10.3 机器学习的算法 ..............................................................166
10.3.1 算法的定义 ............................................................... 166
10.3.2 回归算法 .................................................................. 168
10.3.3 基于实例的算法......................................................... 168
10.3.4 决策树算法 ............................................................... 168
10.3.5 贝叶斯算法 ............................................................... 169
10.3.6 聚类算法 .................................................................. 169
10.3.7 神经网络算法 ............................................................ 169
10.4 机器学习的基本结构 ........................................................169
10.5 机器学习的分类 ..............................................................170
10.5.1 基于学习策略的分类 .................................................. 170
10.5.2 基于所获取知识的表示形式分类 ................................. 171
10.5.3 按应用领域分类 ........................................................ 172
10.5.4 综合分类 .................................................................. 172
10.6 机器学习的应用 ..............................................................173
10.6.1 应用于物联网 ............................................................ 173
10.6.2 应用于聊天机器人 ..................................................... 174
10.6.3 应用于自动驾驶 ......................................................... 174
第11 章 深度学习 ................................................................................ 177
11.1 了解神经网络 .................................................................178
11.1.1 人脑神经的研究 ......................................................... 179
11.1.2 人工神经网络的研究 .................................................. 179
11.1.3 神经网络理解图片 ..................................................... 181
11.2 深度学习的概念 ..............................................................182
11.2.1 深度学习的意义 ......................................................... 183
11.2.2 深度的定义 ............................................................... 186
11.2.3 深度学习的核心思路 .................................................. 187
VI
人工智能概论
11.2.4 深度学习的实现 ......................................................... 187
11.3 机器学习和深度学习 ........................................................189
第四部分 高 级 专 题
第12 章 机器人技术 ............................................................................ 197
12.1 划时代的计划 .................................................................199
12.1.1 划时代的阿波罗计划 .................................................. 199
12.1.2 机器人学中新的标准问题 ........................................... 200
12.2 机器感知 ........................................................................201
12.2.1 机器智能与智能机器 .................................................. 202
12.2.2 机器思维与思维机器 .................................................. 202
12.2.3 机器行为与行为机器 .................................................. 202
12.3 机器人的概念 .................................................................202
12.3.1 机器人的发展 ............................................................ 203
12.3.2 机器人的定义与“三原则” .......................................... 204
12.3.3 机器人的分类 ............................................................ 204
12.4 机器人的技术问题 ...........................................................205
12.4.1 机器人的组成 ............................................................ 205
12.4.2 机器人的运动 ............................................................ 207
12.4.3 机器人大狗 ............................................................... 208
12.5 智能制造 ........................................................................209
12.5.1 智能制造的定义 ......................................................... 209
12.5.2  综合特征 ................................................................. 212
12.5.3 智能技术 .................................................................. 212
12.5.4 测控装置 .................................................................. 213
12.5.5 运作过程 .................................................................. 214
第13 章 智能图像处理 ......................................................................... 217
13.1 模式识别 .......................................................................219
13.2 图像识别 .......................................................................220
13.2.1 人类的图像识别能力 .................................................. 221
13.2.2 图像识别的基础 ......................................................... 221
13.2.3 计算机图形识别模型 .................................................. 222
13.2.4 图像识别的发展 ......................................................... 223
VII
目 录
13.3 机器视觉与图像处理 .......................................................223
13.3.1 机器视觉的发展 ......................................................... 224
13.3.2 图像处理 .................................................................. 224
13.3.3 计算机视觉 ............................................................... 225
13.3.4 计算机视觉与机器视觉的区别 ..................................... 226
13.3.5 神经网络的图像识别技术 ............................................ 227
13.4 图像识别技术的应用 .......................................................227
13.4.1 机器视觉的行业应用 .................................................. 227
13.4.2 检测与机器人视觉应用 ............................................... 228
13.4.3 应用案例:布匹质量检测 ............................................ 229
13.5 智能图像处理技术 ...........................................................230
13.5.1 图像采集 ................................................................... 231
13.5.2 图像预处理 ............................................................... 231
13.5.3 图像分割................................................................... 231
13.5.4 目标识别和分类 ......................................................... 231
13.5.5 目标定位和测量 ......................................................... 232
13.5.6 目标检测和跟踪 ......................................................... 232
第14 章 自然语言处理 ......................................................................... 235
14.1 语言的问题和可能性 ........................................................237
14.2 什么是自然语言处理 .......................................................238
14.3 自然语言处理的历史 .......................................................240
14.3.1 基础期(20 世纪40 年代和50 年代) ............................ 240
14.3.2 符号与随机方法(1960—1970 年) ............................... 241
14.3.3 四种范式(1971—1983 年) ......................................... 241
14.3.4 经验主义和有限状态模型(1984—1993 年).................. 242
14.3.5 大融合(1994—1999 年) ............................................ 242
14.3.6 应用机器学习(2000—2008 年) .................................. 242
14.4 语法类型与语义分析 .......................................................243
14.4.1 语法类型 ................................................................... 243
14.4.2 语义分析和扩展语法 .................................................. 243
14.5 处理数据与处理工具 .......................................................244
14.5.1 统计NLP 语言数据集 ................................................. 244
14.5.2 自然语言处理工具 ..................................................... 244
14.5.3 自然语言处理技术难点 ............................................... 244
14.6 语音处理 .......................................................................245
VIII
人工智能概论
14.6.1 语音处理的发展 ......................................................... 245
14.6.2 语音理解 .................................................................. 246
14.6.3 语音识别 .................................................................. 247
14.6.4 自然语言处理的应用 .................................................. 247
附 录 各章作业参考答案 .................................................................... 257
Baidu
map