注册 登录 进入教材巡展
#
  • #

出版时间:2019-10

出版社:人民邮电出版社

以下为《大数据数学基础(Python语言描述)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 人民邮电出版社
  • 9787115499219
  • 1-1
  • 287520
  • 64212591-8
  • 平装
  • 16开
  • 2019-10
  • 391
  • 261
  • 理学
  • 数学
  • 大数据技术与应用
  • 高职
内容简介

本书全面地讲解了在科学领域广泛运用的微积分、概率论与数理统计、线性代数、数值计算、多元统计分析等数学基础知识。全书共6章:第1章介绍了大数据与数学、数学与Python的关系;第2章介绍了微积分的基础知识,包括极限、导数、微分、不定积分与定积分等;第3章介绍了概率论与数理统计的基础知识,包括数据分布特征、概率与概率分布、参数估计、假设检验等;第4章介绍了线性代数的基础知识,包括行列式、矩阵的运算和特征分解、奇异值分解;第5章介绍了数值计算的基础知识,包括插值法、函数逼近与拟合、非线性方程(组)求根;第6章介绍了常用的多元统计分析方法,包括回归分析、判别分析、聚类分析、主成分分析、因子分析和典型相关分析。本书示例大都结合Python进行求解分析,且每章都有课后习题,可以帮助读者巩固所学的内容。

目录
第 1章 绪论 11.1 大数据与数学 11.1.1 大数据的定义 11.1.2 数学在大数据领域的作用 21.2 数学与Python 41.2.1 NumPy 41.2.2 SciPy 51.2.3 SymPy 51.2.4 StatsModels 5小结 6课后习题 6第 2章 微积分基础 72.1 函数与极限 72.1.1 映射与函数 72.1.2 数列与函数的极限 132.1.3 极限运算法则与存在法则 162.1.4 连续函数与初等函数的连续性 172.2 导数与微分 182.2.1 导数的概念 182.2.2 函数的求导法则 222.2.3 微分的概念 262.3 微分中值定理与导数的应用 302.3.1 微分中值定理 302.3.2 函数的单调性与曲线的凹凸性 312.3.3 函数的极值与最值 322.4 不定积分与定积分 362.4.1 不定积分的概念与性质 362.4.2 不定积分的换元积分法与分部积分法 412.4.3 定积分的概念与性质 432.4.4 定积分的换元积分法与分部积分法 46小结 47课后习题 47第3章 概率论与数理统计基础 493.1 数据分布特征的统计描述 493.1.1 集中趋势度量 493.1.2 离散趋势度量 573.1.3 偏度与峰度的度量 623.2 概率与概率分布 653.2.1 随机事件及其概率 653.2.2 随机变量与概率分布 693.2.3 随机变量的数字特征 753.3 参数估计与假设检验 833.3.1 参数估计 833.3.2 假设检验 85小结 88课后习题 88第4章 线性代数基础 904.1 行列式 904.1.1 行列式与全排列 904.1.2 行列式的性质 974.1.3 行列式按行(列)展开 1024.2 矩阵及其运算 1044.2.1 矩阵的定义 1054.2.2 特殊矩阵 1064.2.3 矩阵的运算 1104.2.4 矩阵的逆 1144.2.5 向量组与矩阵的秩 1154.2.6 协方差矩阵 1194.2.7 相关矩阵 1204.3 矩阵的特征分解与奇异值分解 1214.3.1 特征分解 1214.3.2 奇异值分解 134小结 137课后习题 137第5章 数值计算基础 1405.1 数值计算的基本概念 1405.1.1 误差的来源 1405.1.2 误差分类 1425.1.3 数值计算的衡量标准 1435.2 插值法 1435.2.1 Lagrange插值 1435.2.2 Newton插值 1465.2.3 样条插值 1525.3 函数逼近与拟合 1535.3.1 数据的最小二乘线性拟合 1535.3.2 函数的最佳平方逼近 1575.3.3 数据的多变量拟合 1605.3.4 数据的非线性曲线拟合 1625.4 非线性方程(组)求根 1645.4.1 二分法求解非线性方程 1645.4.2 迭代法求解非线性方程 1675.4.3 Newton法求解非线性方程 1695.4.4 Newton法求解非线性方程组 171小结 173课后习题 174第6章 多元统计分析 1766.1 回归分析 1766.1.1 一元线性回归 1766.1.2 多元线性回归 1846.1.3 Logistic回归 1896.2 判别分析 1936.2.1 距离判别 1946.2.2 贝叶斯判别 1976.2.3 费希尔判别 2006.3 聚类分析 2026.3.1 距离和相似系数 2026.3.2 系统聚类法 2056.3.3 动态聚类法 2126.4 主成分分析 2156.4.1 总体主成分 2156.4.2 样本主成分 2216.5 因子分析 2246.5.1 正交因子模型 2256.5.2 参数估计 2286.5.3 因子旋转 2356.5.4 因子得分 2376.6 典型相关分析 2386.6.1 总体典型相关 2386.6.2 样本典型相关 2406.6.3 典型相关系数的显著性检验 241小结 243课后习题 243附录I t分布表 248附录II F分布表 250参考文献 262
Baidu
map