注册 登录 进入教材巡展
#
  • #

出版时间:2019-05

出版社:武汉大学出版社

以下为《贝叶斯网基础及应用》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 武汉大学出版社
  • 9787307206168
  • 273795
  • 2019-05
作者简介
菅小艳,女,1975年生,山西清徐人。1998年山西大学计算机科学技术系本科毕业,获学士学位。2006年山西大学计算机与信息技术学院毕业,获得工学硕士学位。计算机系基础教研室教师,主讲《数据结构》、《高等数学》等相关课程。主要研究方向为数据挖机掘,机器学习等。参与国家自然科学基金、山西省基础科技平台项目等课题研究,近年来在省级以上学术期刊发表论文10余篇。
查看全部
内容简介
本书主要从贝叶斯网络的概念、发展、推理、应用等方面做了详细的介绍,具体包括叶斯网的基础与性质,精确推理之变量消元,精确推理之团树,带有隐变量的模型学习以及贝叶斯网用于文本分类和MATLAB环境下利用朴素贝叶斯分类器诊断肺癌病人。
目录
第一章 绪论

第二章 贝叶斯网入门
2.1 简介
2.1.1 专家系统
2.1.2 不确定性推理
2.1.3 随机变量的独立性
2.2 贝叶斯网基础
2.2.1 贝叶斯网的概念
2.2.2 贝叶斯网的结构
2.2.3 贝叶斯网的参数
2.2.4 朴素贝叶斯模型
2.3 贝叶斯网的性质
2.3.1 图中的独立性
2.3.2 d-分割
2.3.3 u-分割
2.4 基于MATLAB的贝叶斯网络工具箱
2.4.1 BNT中的算法函数
2.4.2 贝叶斯工具箱的安装
2.4.3 建立贝叶斯网络结构

第三章 精确推理之变量消元
3.1 变量消元算法
3.1.1 引例
3.1.2 消元算法
3.1.3 图结构消元
3.1.4 消元运算的复杂度
3.2 变量消元顺序
3.2.1 最大基数搜索
3.2.2 最小缺边数搜索
3.3 其他简化方法

第四章 精确推理之团树
4.1 团树的基本概念
4.2 团树的构造
4.2.1 三角化法构造团树
4.2.2 消元法构造团树
4.3 单变量后验概率
4.4 消息传递
4.5 团树推理
4.6 MATLAB实现

第五章 带有隐变量的模型学习
5.1 基本概念
5.2 单个隐变量模型
5.2.1 单个隐变量模型的正则性
5.2.2 单个隐变量模型学习算法
5.3 分层隐变量模型
5.3.1 无根的HLC模型
5.3.2 HLC模型的正则性
5.3.3 正则模型空间
5.3.4 学习算法
5.4 MATLAB实现

第六章 贝叶斯网的应用
6.1 朴素贝叶斯分类器用于文本分类
6.2 MATLAB环境下利用朴素贝叶斯分类器诊断肺癌病人
6.3 不平衡数据集上的Relief特征选择算法
参考文献
Baidu
map