注册 登录 进入教材巡展
#
  • #

出版时间:2019-04

出版社:机械工业出版社

以下为《机器学习:算法视角(原书第2版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 机械工业出版社
  • 9787111622260
  • 2版
  • 262557
  • 47229555-9
  • 16开
  • 2019-04
  • 402
  • 309
  • 工学
  • 计算机科学与技术
  • 计算机通信类
  • 本科
作者简介
史蒂芬·马斯兰(Stephen Marsland)新西兰惠灵顿维多利亚大学数学与统计学院教授,兼任新西兰复杂系统卓越研究中心项目主管,负责复杂性、风险与不确定性等相关主题的研究工作。研究兴趣是几何和复杂系统的应用,主要涉及形状空间、机器学习和算法,目前专注于鸟鸣分析工作,目标是自动识别鸟的种类并根据这些信息推断种群密度。
查看全部
内容简介

机器学习融合了计算机科学、统计学、数学、工程学等多个学科,应用领域遍及经济、生物、医药、物理、化学等。本书针对计算机科学专业学生遇到的统计学基础知识不足的问题,聚焦于机器学习中的算法,清晰呈现算法背后的数学和统计学知识,同时提供必要的编程技巧和实验方法。

书中全面涵盖各类算法,如神经网络、多层感知器、径向基函数、支持向量机、进化学习、强化学习、决策树学习、无监督学习、图模型等。第2版进行了全面修订和更新,以反映机器学习的新发展,新增了两个章节来讨论深度置信网络和高斯过程,此外,还添加了随机森林、考虑精度的方法、MLP的共轭梯度优化、卡尔曼滤波和粒子滤波等内容。

本书的代码示例采用Python语言编写,所有代码均可从免费下载。

目录
Machine Learning: An Algorithmic Perspective, Second
Edition
第2版前言
第1版前言
第1章 绪论1
 1.1 如果数据有质量,地球将成为黑洞1
 1.2 学习3
  1.2.1 机器学习3
 1.3 机器学习的类别4
 1.4 监督学习5
  1.4.1 回归5
  1.4.2 分类6
 1.5 机器学习过程7
 1.6 关于编程的注意事项8
 1.7 本书的学习路线 9
 拓展阅读10
第2章 预备知识11
 2.1 专业术语11
  2.1.1 权重空间11
  2.1.2 维度灾难12
 2.2 知你所知:测试机器学习算法13
  2.2.1 过拟合14
  2.2.2 训练集、测试集和验证集14
  2.2.3 混淆矩阵15
  2.2.4 精度指标16
  2.2.5 受试者工作特征曲线17
  2.2.6 不平衡数据集17
  2.2.7 度量精度18
 2.3 数据与概率的转换19
  2.3.1 最小化风险20
  2.3.2 朴素贝叶斯分类21
 2.4 基本统计概念22
  2.4.1 平均值22
  2.4.2 方差与协方差22
  2.4.3 高斯分布24
 2.5 权衡偏差与方差24
 拓展阅读26
 习题26
第3章 神经元、神经网络和线性判别27
 3.1 大脑和神经元27
  3.1.1 Hebb法则27
  3.1.2 McCulloch和Pitts神经元28
  3.1.3 McCulloch和Pitts神经元模型的局限性29
 3.2 神经网络30
 3.3 感知器31
  3.3.1 学习速率η32
  3.3.2 输入偏置32
  3.3.3 感知器学习算法33
  3.3.4 感知器学习示例34
  3.3.5 具体实现35
 3.4 线性可分性39
  3.4.1 感知器收敛定理40
  3.4.2 XOR函数41
  3.4.3 有用的领悟42
  3.4.4 另一个示例:皮马印第安人数据集43
  3.4.5 数据预处理44
 3.5 线性回归45
  3.5.1 示例46
 拓展阅读47
 习题48
第4章 多层感知器49
 4.1 前向50
  4.1.1 偏置50
 4.2 后向:误差的反向传播50
  4.2.1 多层感知器算法53
  4.2.2 初始化权重55
  4.2.3 不同的输出激活函数56
  4.2.4 顺序和批量训练57
  4.2.5 局部最小57
  4.2.6 利用冲量58
  4.2.7 小批量和随机梯度下降58
  4.2.8 其他改善方法59
 4.3 实践中的MLP59
  4.3.1 训练数据的量59
  4.3.2 隐藏层的数目59
  4.3.3 什么时候停止学习60
 4.4 MLP应用示例61
  4.4.1 回归问题61
  4.4.2 使用MLP分类63
  4.4.3 分类示例:iris数据集64
  4.4.4 时间序列预测66
  4.4.5 数据压缩:自动关联网络68
 4.5 MLP使用指南69
 4.6 反向传播的推导70
  4.6.1 网络输出70
  4.6.2 网络误差70
  4.6.3 激活函数的要求71
  4.6.4 误差的后向传播72
  4.6.5 输出激活函数74
  4.6.6 误差函数的另一种形式75
 拓展阅读75
 习题76
第5章 径向基函数和样条函数77
 5.1 感受野77
 5.2 径向基函数网络79
  5.2.1 训练RBF网络80
 5.3 插值和基函数82
  5.3.1 基和基扩展83
  5.3.2 三次样条函数84
  5.3.3 用样条拟合数据84
  5.3.4 平滑样条85
  5.3.5 更高维度86
  5.3.6 边界之外86
 拓展阅读87
 习题87
第6章 维度约简88
 6.1 线性判别分析89
 6.2 主成分分析91
  6.2.1 PCA算法与多层感知器的关系94
  6.2.2 核PCA94
 6.3 因素分析96
 6.4 独立成分分析97
 6.5 局部线性嵌入98
 6.6 ISOMAP算法100
  6.6.1 多维标度法101
 拓展阅读102
 习题103
第7章 概率学习104
 7.1 高斯混合模型104
  7.1.1 期望最大化算法105
  7.1.2 信息准则107
 7.2 最近邻法108
  7.2.1 近邻平滑109
  7.2.2 有效的距离计算:KD-Tree110
  7.2.3 距离度量112
 拓展阅读114
 习题114
第8章 支持向量机115
 8.1 最优分割115
  8.1.1 间隔和支持向量116
  8.1.2 约束优化问题117
  8.1.3 非线性可分问题的松弛变量119
 8.2 核120
  8.2.1 选择核121
  8.2.2 示例:XOR122
 8.3 支持向量机算法122
  8.3.1 实现123
  8.3.2 示例125
 8.4 支持向量机的拓展126
  8.4.1 多类分类126
  8.4.2 支持向量机回归127
  8.4.3 其他优势128
 拓展阅读128
 习题128
第9章 优化和搜索130
 9.1 下山法130
  9.1.1 泰勒展开132
 9.2 最小二乘优化133
  9.2.1 Levenberg-Marquardt算法133
 9.3 共轭梯度法137
  9.3.1 示例139
  9.3.2 共轭梯度和MLP139
 9.4 搜索:三种基本方法141
  9.4.1 穷举法141
  9.4.2 贪婪搜索142
  9.4.3 爬山法142
 9.5 开发和探索143
 9.6 模拟退火法143
  9.6.1 算法比较144
 拓展阅读145
 习题145
第10章 进化学习146
 10.1 遗传算法147
  10.1.1 字符串表示147
  10.1.2 评价适应度148
  10.1.3 种群148
  10.1.4 产生后代:选择父母149
 10.2 产生后代:遗传算子150
  10.2.1 交叉150
  10.2.2 变异151
  10.2.3 精英法、比赛法和小生境151
 10.3 使用遗传算法153
  10.3.1 图着色153
  10.3.2 间断平衡154
  10.3.3 示例:背包问题155
  10.3.4 示例:四峰问题155
  10.3.5 遗传算法的缺陷156
  10.3.6 用遗传算法训练神经网络156
 10.4 遗传程序157
 10.5 与采样结合的进化学习158
 拓展阅读159
 习题160
第11章 强化学习161
 11.1 概述161
 11.2 示例:迷路162
  11.2.1 状态和动作空间163
  11.2.2 胡萝卜和棍子:奖赏函数164
  11.2.3 折扣165
  11.2.4 动作选择165
  11.2.5 策略166
 11.3 马尔可夫决策过程166
  11.3.1 马尔可夫性166
  11.3.2 马尔可夫决策过程中的概率167
 11.4 值167
 11.5 回到迷路的示例:利用强化学习170
 11.6 sarsa和Q-learning的不同171
 11.7 强化学习的用处172
 拓展阅读172
 习题173
第12章 树的学习174
 12.1 使用决策树174
 12.2 构建决策树175
  12.2.1 快速入门:信息论中的熵175
  12.2.2 ID3176
  12.2.3 基于Python的树和图的实现178
  12.2.4 决策树的实现178
  12.2.5 处理连续变量180
  12.2.6 计算复杂度180
 12.3 分类和回归树181
  12.3.1 基尼不纯度181
  12.3.2 树回归182
 12.4 分类示例182
 拓展阅读184
 习题184
第13章 委员会决策:集成学习186
 13.1 boosting187
  13.1.1 AdaBoost187
  13.1.2 掘根190
 13.2 bagging190
  13.2.1 subagging191
 13.3 随机森林192
  13.3.1 与boosting方法比较193
 13.4 组合分类器的不同方法194
 拓展阅读195
 习题196
第14章 无监督学习197
 14.1 k-means算法197
  14.1.1 处理噪点200
  14.1.2 k-means神经网络200
  14.1.3 归一化201
  14.1.4 一个更好的权重更新规则202
  14.1.5 示例:iris数据203
  14.1.6 使用竞争学习来聚类203
 14.2 向量量化204
 14.3 自组织特征映射204
  14.3.1 SOM算法206
  14.3.2 近邻连接207
  14.3.3 自组织208
  14.3.4 网络维度和边界条件208
  14.3.5 SOM应用示例209
 拓展阅读211
 习题211
第15章 马尔可夫链蒙特卡罗方法213
 15.1 采样213
  15.1.1 随机数213
  15.1.2 高斯随机数214
 15.2 蒙特卡罗216
 15.3 建议分布216
 15.4 马尔可夫链蒙特卡罗219
  15.4.1 马尔可夫链219
  15.4.2 Metropolis-Hastings算法220
  15.4.3 模拟退火222
  15.4.4 Gibbs采样223
 拓展阅读224
 习题225
第16章 图模型226
 16.1 贝叶斯网络227
  16.1.1 示例:考试恐惧227
  16.1.2 近似推断230
  16.1.3 创建贝叶斯网络232
 16.2 马尔可夫随机场233
 16.3 隐马尔可夫模型234
  16.3.1 前向算法236
  16.3.2 Viterbi算法238
  16.3.3 Baum-Welch或前向后向算法239
 16.4 跟踪方法242
  16.4.1 卡尔曼滤波242
  16.4.2 粒子滤波247
 拓展阅读249
 习题250
第17章 对称权重与深度置信网络251
 17.1 积极学习:Hopfield网络252
  17.1.1 联想记忆252
  17.1.2 实现联想记忆252
  17.1.3 能量函数255
  17.1.4 Hopfield网络的容量256
  17.1.5 连续Hopfield网络257
 17.2 随机神经元:玻尔兹曼机257
  17.2.1 受限玻尔兹曼机259
  17.2.2 CD算法的推导262
  17.2.3 监督学习265
  17.2.4 RBM作为定向置信网络267
 17.3 深度学习268
  17.3.1 深度置信网络270
 拓展阅读273
 习题273
第18章 高斯过程274
 18.1 高斯过程回归275
  18.1.1 添加噪声276
  18.1.2 高斯过程回归的实现(一)278
  18.1.3 学习参数279
  18.1.4 高斯过程回归的实现(二)280
  18.1.5 选择(一组)协方差函数282
 18.2 高斯过程分类282
  18.2.1 拉普拉斯近似283
  18.2.2 计算后验283
  18.2.3 高斯过程分类的实现285
 拓展阅读286
 习题287
附录 Python入门288
Baidu
map