注册 登录 进入教材巡展
#

出版时间:2008-02-20

出版社:高等教育出版社

以下为《计量经济学导论》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040171396
  • 1
  • 251583
  • 平装
  • 16开
  • 2008-02-20
  • 630
  • 438
  • 经济学
  • 应用经济学
目录
Chapter 1 The Nature of EconometriCS and Economic Data  1.1 What Is Econometrics?  1.2 Steps in Empirical Economic Analysis  1.3 The Structure of Economic Data   Cross—Sectional Data   Time SeriesData   Pooled Cross Sections   Panel or LongitudinoZ Data   A Comment on Data Structures  1.4 Causality and the Notion of CetefiS Paribus in Econometric  Analysis   Summary   Key TelTIIS Chapter 2 The Simple Regression Model  2.1 Definition of the Simple Regression Model  2.2 Deriving the Ordinary Least Squares Estimates   A Note on Terminology  2.3 Mechanics Of oLS   Fitted Values and Residuals   Algebraic Properties of oLS Statistics   Goodness—of-Fit 4O 2.4 Units Of Measurement and Functional Form   The Effects ofChanging Units ofMeasurement on oLs  Statistics   Incorporating Nonlinearities in Simple Regression   The Meaning of“Linear”Regression  2.5 Expected Values and Vances of the OLS Estimators   Unbiasedness of oLS   Variances ofthe OLs Estimators   Estimating the Error VaHance  2.6 Regression Through the Origin   Summary   Key Terms   Problems   Computer Exercises   Appendix 2A Chapter 3 Multiple Regression Analysis:Estimation  3.1 Motivation for Multiple Regression   e Modef wmO Independent Variables   TheModelwfth kIndependent Variables  3.2 Mechanics and Interpretation of Ordinary Least Squares   Obtaining the oLs Estimates   Interpreting the oLS Regression Equation   On the Meaning of“Holding Other Factors Fixed”in MultipleRegression   Changing More than One Independent Variable Simultaneously   oLs Fitted Values and Residuals   A“Partialling Out”Interpretation ofMultiple Regression   Comparison ofSimple and Multiple Regression Estimates   Goodness—of-Fit   Regression Through the Origin  3.3 The Expected Value of the OLS Estimators   Including Irrelevant Variables in a Regression Model   Omitted Variable BiaJ?The Simple Case   Omitted Variable Bins:More General Cases  3.4 The VAlriance of the OLS Estimators   The Components of the OLS[riances:Multicollinearity   Variances fn Misspecified Mols   Estimating G2:Standard Errors ofthe oLs Estimators  3.5 Efficiency of OLS:The rkov Theorem   Summary   KeyTerms   Problems   Computer Exercises   Appendix 3A Chapter 4 Multiple Regression Analysis:Inference  4.1 Sampling Distributions of the OLS Estimators  4.2 Testing Hypotheses About a Single Population Parameter:The t Test   Testing Against ded Alternatives   ded Alternatives   Testing Other Hypotheses About,ComputingP—Valuesfort Tests   A Reminder on the Language of Classical Hypothesis Testing   Economic,or Practical,versus Statistical Sign~ficance  4.3 Confidence Intervals  4.4 Testing Hypotheses About a Single Linear Combination of theParameters  4.5 Testing Multiple Linear Restrictions:The F Test Chapter 5 Multiple Regression Analysis:OLS Asymptotics Chapter 6 Muttipte Regression Analysis:Further Issues Chapter 7 Multipie Regression Analysis with Qualitative Information:Chapter 8 Heteroskedastieity Chapter 9 More O11 Speification and Data ProblemSChapter 10 Basic Regression Analysis with Time Series Data Chapter 1l Further Issues in Using OLS with Time Series Data Chapter 12 Seriat Correlation and Heteroskedasticity in TimeComputer Exercises Appendix A Answers to Chapter Questions Appendix B Statistical Tables Glossary
Baidu
map