计量经济学导论
¥39.00定价
作者: 杰弗瑞.M.伍德里奇
出版时间:2008-02-20
出版社:高等教育出版社
- 高等教育出版社
- 9787040171396
- 1
- 251583
- 平装
- 16开
- 2008-02-20
- 630
- 438
- 经济学
- 应用经济学
目录
Chapter 1 The Nature of EconometriCS and Economic Data 1.1 What Is Econometrics? 1.2 Steps in Empirical Economic Analysis 1.3 The Structure of Economic Data Cross—Sectional Data Time SeriesData Pooled Cross Sections Panel or LongitudinoZ Data A Comment on Data Structures 1.4 Causality and the Notion of CetefiS Paribus in Econometric Analysis Summary Key TelTIIS Chapter 2 The Simple Regression Model 2.1 Definition of the Simple Regression Model 2.2 Deriving the Ordinary Least Squares Estimates A Note on Terminology 2.3 Mechanics Of oLS Fitted Values and Residuals Algebraic Properties of oLS Statistics Goodness—of-Fit 4O 2.4 Units Of Measurement and Functional Form The Effects ofChanging Units ofMeasurement on oLs Statistics Incorporating Nonlinearities in Simple Regression The Meaning of“Linear”Regression 2.5 Expected Values and Vances of the OLS Estimators Unbiasedness of oLS Variances ofthe OLs Estimators Estimating the Error VaHance 2.6 Regression Through the Origin Summary Key Terms Problems Computer Exercises Appendix 2A Chapter 3 Multiple Regression Analysis:Estimation 3.1 Motivation for Multiple Regression e Modef wmO Independent Variables TheModelwfth kIndependent Variables 3.2 Mechanics and Interpretation of Ordinary Least Squares Obtaining the oLs Estimates Interpreting the oLS Regression Equation On the Meaning of“Holding Other Factors Fixed”in MultipleRegression Changing More than One Independent Variable Simultaneously oLs Fitted Values and Residuals A“Partialling Out”Interpretation ofMultiple Regression Comparison ofSimple and Multiple Regression Estimates Goodness—of-Fit Regression Through the Origin 3.3 The Expected Value of the OLS Estimators Including Irrelevant Variables in a Regression Model Omitted Variable BiaJ?The Simple Case Omitted Variable Bins:More General Cases 3.4 The VAlriance of the OLS Estimators The Components of the OLS[riances:Multicollinearity Variances fn Misspecified Mols Estimating G2:Standard Errors ofthe oLs Estimators 3.5 Efficiency of OLS:The rkov Theorem Summary KeyTerms Problems Computer Exercises Appendix 3A Chapter 4 Multiple Regression Analysis:Inference 4.1 Sampling Distributions of the OLS Estimators 4.2 Testing Hypotheses About a Single Population Parameter:The t Test Testing Against ded Alternatives ded Alternatives Testing Other Hypotheses About,ComputingP—Valuesfort Tests A Reminder on the Language of Classical Hypothesis Testing Economic,or Practical,versus Statistical Sign~ficance 4.3 Confidence Intervals 4.4 Testing Hypotheses About a Single Linear Combination of theParameters 4.5 Testing Multiple Linear Restrictions:The F Test Chapter 5 Multiple Regression Analysis:OLS Asymptotics Chapter 6 Muttipte Regression Analysis:Further Issues Chapter 7 Multipie Regression Analysis with Qualitative Information:Chapter 8 Heteroskedastieity Chapter 9 More O11 Speification and Data ProblemSChapter 10 Basic Regression Analysis with Time Series Data Chapter 1l Further Issues in Using OLS with Time Series Data Chapter 12 Seriat Correlation and Heteroskedasticity in TimeComputer Exercises Appendix A Answers to Chapter Questions Appendix B Statistical Tables Glossary