微积分学习辅导与解题方法
作者: 冯翠莲,刘书田
出版时间:2003-12
出版社:高等教育出版社
- 高等教育出版社
- 9787040129366
- 1版
- 38337
- 46243917-5
- 平装
- 异16开
- 2003-12
- 590
- 728
- 理学
- 数学
- O172
- 经济学、管理学
- 本科
本书是高等学校经济类、管理类各专业学生学习《微积分》课程的辅导教材。内容包括一元函数微积分,多元函数微积分,无穷级数,微分方程与差分方程。
本书强调对基本概念、基本理论内涵的理解及各知识点之间的相互联系。选题广泛、典型,既有基本题,又有综合题、提高题,用“讲思路举例题”与“举题型讲方法”的方式来揭示解题规律与思维方法,以使读者融会贯通,举一反三,达到正确理解、巩固所学知识和灵活运用;纠正在运算方法、运算过程中常犯的错误;掌握解题思路、解题方法;提高逻辑推理和分析判断能力;提高解题技巧。
本书每章有小结并配有自测题;自测题附有参考答案与解法提示。
本书是经济类、管理类学生学习期间和报考研究生前的必备读物,是颇具有特点的教学参考书。对参加自学考试、专升本考试和成人教育的读者是一本无师自通的自学指导书。
前辅文
第一章 函数
§1.1 函数概念
§1.2 函数的几种特性
§1.3 图形的几何变换
一、 用图形的几何变换作图
二、 对称图形的增减性、极值、凹向、拐点及切线斜率
小结
自测题
第二章 极限与连续
§2.1 极限概念
§2.2 极限运算
一、 代数函数的极限
二、 用两个重要极限求极限
三、 无穷小与无穷大阶的比较及等价无穷小代换
四、 用单侧极限准则求极限
五、 用极限存在准则求极限
六、 通项为n项和与n个因子乘积的极限
七、 含有参变量的极限
八、 确定待定常数、待定函数、待定极限
§2.3 函数连续与间断概念
§2.4 用连续函数的性质讨论方程的根
小结
自测题
第三章 导数与微分
§3.1 导数概念
§3.2 导数运算
一、 导数的运算法则
二、 隐函数的导数
三、 对数求导法
四、 由参数方程所确定的函数的导数
五、 分段函数求导数
§3.3 高阶导数
§3.4 曲线的切线和法线
§3.5 微分概念及其运算
小结
自测题
第四章 微分中值定理与导数的应用
§4.1 微分中值定理
一、 微分中值定理
二、 用微分中值定理证明等式
三、 用微分中值定理证明不等式
四、 用微分中值定理求极限
§4.2 用洛必达法则与泰勒公式求极限
一、 洛必达法则
二、 用泰勒公式求极限
§4.3 函数的增减性与极值
§4.4 曲线的凹凸性与渐近线
一、 曲线的凹凸性与拐点
二、 曲线的渐近线
§4.5 用增减性、极值、凹凸性证明不等式
一、 用增减性与极值证明不等式
二、 用凹凸性证明不等式
§4.6 用导数讨论方程的根
一、 方程f(x)=0的根
二、 整式方程有重根的条件
§4.7 最大值与最小值应用问题
一、 几何应用
二、 经济应用
小结
自测题
第五章 不定积分
§5.1 不定积分的概念与性质
§5.2 换元积分法
一、 第一换元积分法
二、 第二换元积分法
§5.3 分部积分法
§5.4 用方程组求不定积分
§5.5 有理函数的积分
小结
自测题
第六章 定积分
§6.1 定积分的概念与性质
一、 定积分概念
二、 定积分的性质
§6.2 变上限积分
一、 变上限积分的导数、未定式的极限
二、 变上限积分函数的性态分析
§6.3 牛顿-莱布尼茨公式
一、 分段函数求定积分
二、 函数f(x)在积分号下求f(x)
三、 由定积分表示的变量的极限
§6.4 定积分的换元积分法与分部积分法
一、 换元积分法 分部积分法
二、 对称区间上定积分的计算
三、 周期函数的定积分
§6.5 证明定积分等式
一、 证明两端都是积分表达式的等式
二、 用微分中值定理证明有关定积分等式
三、 讨论涉及定积分式的方程的根
§6.6 证明定积分不等式
一、 直接计算定积分推证不等式
二、 用作辅助函数的方法证明不等式
三、 用积分中值定理和微分中值定理证明不等式
§6.7 反常积分
一、 用收敛定义计算反常积分
二、 反常积分敛散性的判别
三、 Γ函数与Β函数
§6.8 积分学的应用
一、 定积分的几何应用
二、 由边际函数求总函数
三、 现金流量的现在值
小结
自测题
第七章 多元函数微积分学
§7.1 多元函数的概念
一、 二元函数概念
二、 二元函数的极限与连续
§7.2 偏导数与全微分
一、 连续,偏导数存在,可微的关系
二、 偏导数
三、 全微分
§7.3 复合函数与隐函数的微分法
一、 复合函数的微分法
二、 隐函数的微分法
§7.4 多元函数的极值
一、 二元函数的极值
二、 经济应用问题
§7.5 二重积分
一、 二重积分的概念与性质
二、 在直角坐标系下计算二重积分
三、 在极坐标系下计算二重积分
四、 无界区域的二重积分
五、 证明二重积分等式与不等式
六、 二重积分的几何应用
小结
自测题
第八章 无穷级数
§8.1 数项级数的概念与性质
§8.2 正项级数敛散性的判别法
§8.3 任意项级数敛散性的判别法
§8.4 幂级数的收敛半径与收敛域
§8.5 函数展开为幂级数与级数求和
一、 函数展开为幂级数
二、 求幂级数和函数
三、 数项级数求和
小结
自测题
第九章 微分方程
§9.1 微分方程的基本概念
§9.2 一阶微分方程
§9.3 高阶常系数线性微分方程的解法
一、 二阶常系数线性微分方程的解法
二、 n阶常系数线性微分方程的解法
§9.4 可降阶的高阶微分方程
§9.5 用微分方程求解函数方程
一、 含变限积分的函数方程
二、 不含积分符号也不含未知函数导数的函数方程
§9.6 微分方程的应用
一、 几何应用
二、 经济应用
三、 用微分方程求幂级数的和函数
小结
自测题
第十章 差分方程
§10.1 基本概念 基本定理
一、 基本概念
二、 线性差分方程的基本定理
§10.2 一阶常系数线性差分方程的解法
§10.3 高阶常系数线性差分方程的解法
一、 二阶常系数线性差分方程的解法
二、 n阶常系数线性差分方程的解法
§10.4 差分方程在经济中的应用
小结
自测题
自测题参考答案与解法提示