注册 登录 进入教材巡展
#
  • #

出版时间:2011-06-14

出版社:高等教育出版社

以下为《几何分析与相对论(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040327328
  • 1版
  • 227533
  • 46254038-6
  • 精装
  • 16开
  • 2011-06-14
  • 580
  • 546
  • 理学
  • 数学
  • O18
  • 数学类
  • 研究生及以上
作者简介

Richard Shoen,著名几何分析学家

查看全部
内容简介

自从爱因斯坦提出广义相对论以来,微分几何就与广义相对论密不可分。微分几何和几何分析为学习广义相对论提供方法以及正确的框架,而广义相对论激发富有挑 战性的各种问题。《几何分析与相对论》包含23篇几何分析和广义相对论各领域的综述性文章,作者均为该领域的知名专家。几何分析方面的内容包括 Yamabe问题、平均曲率流、极小曲面、调和映照、Ricci流、胶合与分裂结构、函数论、流形的塌陷、Kahler-Einstein度量、完备流形 的渐近几何以及Teichmuller空间几何等。广义相对论方面的内容包括正质量定理、Penrose不等式、标量曲率及Einstein约束方程、准 局域质量泛函、高维黑洞拓扑、渐近双曲流形的正质量定理等。《几何分析与相对论》可供几何分析或相对论领域的研究人员和研究生参考。

目录

 前辅文
 On the Positive Mass, Penrose, and ZAS Inequalities in General Dimension Hubert L Bray
  1 Dedication
  2 Introduction
  3 A Trio of Inequalities
  References
 Recent Progress on the Yamabe Problem Simon Brendle, Fernando C Marques
  1 The Yamabe Problem
  2 The Compactness Conjecture
  3 Non-compactness Results in Dimension n ¸ 25
  4 A Compactness Result in Dimension n • 24
  5 The Parabolic Yamabe Flow
  References
 Some Recent Progress on Mean Curvature Flow for Entire Lagrangian Graphs Jingyi Chen
  1 Introduction
  2 Longtime Existence With Lipschitz Continuous Initial Data
  3 Uniqueness and Viscosity Solutions
  4 Self-similar Solutions
  References
 Radial Viewpoint on Minimal Surfaces Jaigyoung Choe
  1 Introduction
  2 Cone
  3 Horizon
  4 Non-Euclidean Space
  5 Ray preserving Metric
  6 Varying Curvature
  7 Embeddedness
  References
 Minimal Surfaces and Mean Curvature Flow Tobias H Colding, William P Minicozzi II
  1 Introduction
  2 Harmonic Functions and the Heat Equation
  3 Energy of a Curve
  4 Birkho®: A Closed Geodesic on a Two Sphere
  5 Curve Shortening Flow
  6 Minimal Surfaces
  7 Classi¯cation of Embedded Minimal Surfaces
  8 Mean Curvature Flow
  9 Width and mean curvature °ow
  10 Singularities for MCF
  11 Smooth Compactness Theorem for Self-shrinkers
  12 The Entropy
  13 An Application
  14 Non-compact self-shrinkers
  References
 Scalar Curvature and the Einstein Constraint Equations Justin Corvino, Daniel Pollack
  1 Introduction
  2 The Constraint Equations
  3 A Tour of Asymptotically Flat Solutions
  4 The Conformal Method
  5 Gluing Constructions
  References
 On the Intrinsic Di®erentiability Theorem of Gromov-Schoen Georgios Daskalopoulos, Chikako Mese
  1 Introduction
  2 De¯nitions
  3 Main Theorem
  References
 Minimal Surface Techniques in Riemannian Geometry Ailana Fraser
  1 Introduction
  2 Brief Overview of Some Geodesic Methods
  3 Existence of Minimal Surfaces
  4 Second Variation Theory for Minimal Surfaces and Applications
  References
 Stability and Rigidity of Extremal Surfaces in Riemannian Geometry and General Relativity Gregory J Galloway
  1 Minimal Hypersurfaces in Manifolds of Nonnegative
  Scalar Curvature
  2 Marginally Outer Trapped Surfaces
  3 Positivity of Mass for Asymptotically Hyperbolic Manifolds
  References
 Convex Hypersurfaces of Constant Curvature in Hyperbolic Space Bo Guan, Joel Spruck
  1 Introduction
  2 Formulas on Hypersurfaces
  3 The Asymptotic Angle Maximum Principle and
  Gradient Estimates
  4 Curvature Estimates
  5 Uniqueness and Foliations
  References
 Ricci Flow in Two Dimensions James Isenberg, Rafe Mazzeo, Natasa Sesum
  1 Introduction
  2 General Considerations
  3 Compact Surfaces
  4 Open Surfaces
  5 Flows on Incomplete Surfaces
  References
 Doubling and Desingularization Constructions for Minimal Surfaces Nikolaos Kapouleas
  1 Introduction
  2 Doubling Constructions
  3 Desingularization Constructions
  4 Minimal Surfaces in the Round Three-Sphere
  5 The Building Blocks for the Desingularization Construction
  6 An Initial Surface for the Desingularization Construction
  7 The Family of Initial Surfaces for the
  Desingularization Construction
  8 Main Estimates and Outline of the Proof
  References
 The Metric Properties of Lagrangians Yng-Ing Lee
  1 Introduction
  2 A Short Survey
  3 De¯nitions and Properties
  4 Singularities and Geometric Measure Theory
  5 Gluing and Singular Perturbation
  References
 Structure of Complete Manifolds with Positive Spectrum Peter Li
  1 Introduction
  2 Riemannian Case
  3 KÄahler Case
  4 Quaternionic KÄahler Manifolds, Cayley Manifolds, and Locally
  Symmetric Spaces
  5 Manifolds of Finite Volume
  6 Further Generalizations
  References
 Topology of Sobolev Mappings and Associated Variational Problems Fang Hua Lin
  Introduction
  1 Analytical and Topological Properties of Sobolev Maps
  2 Singularity of Energy Minimizing Maps
  3 Limits of Singular Sets of p-Energy Minimizing Maps
  References
 A Survey of Research on Boundary Behavior of Compact Manifolds via the Positive Mass Theorem Pengzi Miao
  1 Introduction
  2 Statement of the Positive Mass Theorem
  3 On compact Manifolds with Nonnegative Scalar Curvature
  4 On Compact Manifolds with Negative Scalar Curvature
  References
 Recent Progress on Singularities of Lagrangian Mean Curvature Flow Andr¶e Neves
  1 Introduction
  2 Preliminaries
  3 Basic Techniques
  4 Applications I: Blow-ups
  5 Applications II: Self-Expanders
  6 Application III: Stability of Singularities
  7 Open Questions
  References
 Geometric Structures of Collapsing Riemannian Manifolds I Aaron Naber, Gang Tian
  1 Introduction
  2 Structure of Collapsed Spaces
  3 Geometry of Toric Quotients
  4 Geometry of Toric Quotients II
  5 Proof of Theorems 11 and 12
  6 Proof of Theorem 13
  A Geometry of Quotients
  B Orbifolds
  References
 Deformation of KÄahler-Einstein Metrics Xiaofeng Sun, Shing-Tung Yau
  1 Introduction
  2 Complex Structures of KÄahler-Einstein Manifolds
  3 Deformation of KÄahler-Einstein Metrics
  4 Local Trivialization of Polarization Bundles and Deformation of Sections
  5 Curvature of L2 Metrics on Direct Image Sheaves
  6 Appendix
  References
 Reverse Bubbling in Geometric Flows
  Peter M Topping
  1 Introduction
  2 The Harmonic map Flow
  3 Ricci Flow
  4 Addendum | Mean Curvature Flow
  References
 Review on Harmonic Di®eomorphisms Between Complete Noncompact Surfaces Tom Y H Wan
  1 Introduction
  2 Harmonic Map Theory of Universal TeichmÄuller Space
  3 Asymptotic Behavior of Open Harmonic Embedding From
  the Complex Plane Into Hyperbolic Plane
  References
 Compacti¯cations of Complete Riemannian Manifolds and Their Applications Xiaodong Wang
  1 Introduction
  2 The Geometric Compacti¯cation
  3 The Martin Compacti¯cation
  4 The Busemann Boundary
  5 A Comparison Theorem
  References
 Some Aspects of Weil-Petersson Geometry of TeichmÄuller Spaces Sumio Yamada
  1 Introduction
  2 Harmonic Maps into T and an Application
  3 Finite Rank Properties of T
  4 Coxeter-Tits Construction
  5 Weil-Petersson Geodesic Completeness
  6 Weil-Petersson Geometry of the Universal TeichmÄuller Space
  7 Embeddings of the Coxeter Complex into UT
  8 Summary and Open Problems
  References

Baidu
map