注册 登录 进入教材巡展
#
  • #

出版时间:2022-10

出版社:科学出版社

以下为《数学物理方法》的配套数字资源,这些资源在您购买图书后将免费附送给您:
试读
  • 科学出版社
  • 9787030574350
  • 1-5
  • 226705
  • 46259989-5
  • 平装
  • 16开
  • 2022-10
  • 343
  • 268
  • 理学
  • 物理学
  • 理工科
  • 研究生及以上
目录
目录
前言
第1章 复变函数论 1
1.1 复数 1
1.1.1 复数的定义 1
1.1.2 复数的运算 2
1.1.3 复数的几何表示 3
习题1.1 7
1.2 复变函数的概念 8
1.2.1 区域的定义与分类 9
1.2.2 复变函数的单值性要求与黎曼面 10
习题1.2 13
1.3 复变函数的微分及解析函数的定义 13
1.3.1 复变函数的连续性 13
1.3.2 复变函数的导数及解析函数的定义 13
1.3.3 柯西-黎曼条件 14
1.3.4 利用柯西-黎曼条件确定解析函数 16
1.3.5 解析函数的特性 18
习题1.3 20
1.4 复变函数的积分 20
1.4.1 复变函数积分的定义 21
1.4.2 柯西积分定理 21
1.4.3 柯西积分公式 24
习题1.4 26
1.5 解析函数的幂级数展开 27
1.5.1 幂级数 27
1.5.2 泰勒级数 30
1.5.3 洛朗级数 34
1.5.4 复变函数的零点与奇点 37
习题1.5 39
1.6 留数定理 40
1.6.1 留数的定义 41
1.6.2 留数定理及证明 41
1.6.3 留数的求法 42
1.6.4 无穷远点处函数的留数及留数和定理 43
习题1.6 44
1.7 留数定理在实变函数积分中的应用 45
1.7.1 类型一:型积分 45
1.7.2 类型二:型积分 48
1.7.3 类型三:型积分 51
1.7.4 具有支点的函数的积分 55
习题1.7 57
1.8 复变函数的色散关系 58
第2章 积分变换 61
2.1 傅里叶级数 61
2.1.1 周期函数的傅里叶级数展开 61
2.1.2 复数形式的傅里叶级数 64
2.1.3 有限区间上函数的傅里叶级数展开 66
2.1.4 多重傅里叶级数展开 69
习题2.1 69
2.2 傅里叶积分变换 70
2.2.1 傅里叶积分变换的概念 70
2.2.2 傅里叶变换的基本性质 72
习题2.2 75
2.3 δ-函数简介 76
2.3.1 δ-函数的定义 76
2.3.2 δ-函数的性质 78
2.3.3 δ-函数的导数 80
2.3.4 δ-函数的傅里叶变换 81
2.3.5 利用δ-函数讨论某些典型函数的傅里叶变换 85
2.3.6 傅里叶变换的积分定理 86
2.3.7 有限区间上δ-函数的傅里叶级数展开 87
习题2.3 88
2.4 拉普拉斯变换 89
2.4.1 拉普拉斯变换的定义 89
2.4.2 拉普拉斯变换的性质 91
习题2.4 95
2.5 拉普拉斯变换在常微分方程求解中的应用 95
习题2.5 97
第3章 数学物理方程 98
3.1 波动问题 98
3.1.1 波动方程(双曲型方程)的导出 99
3.1.2 定解问题的建立 104
3.1.3 有限区间齐次方程齐次边条件波动定解问题的分离变量法求解 108
3.1.4 有限区间非齐次方程齐次边条件定解问题的分离变量法求解 117
3.1.5 有限区间非齐次边条件定解问题的求解 124
3.1.6 积分变换法求解无界和半无界弦振动问题 125
习题3.1 134
3.2 输运问题 135
3.2.1 输运方程(抛物型方程)的导出及其定解问题的确立 135
3.2.2 有限区间上输运方程的分离变量法求解 140
3.2.3 无界与半无界区间上输运问题的求解 145
习题3.2 150
3.3 稳定场问题 151
3.3.1 稳定场方程(椭圆方程)及其定解问题的确立 151
3.3.2 有限区间上稳定场问题的分离变量法求解 152
3.3.3 无界区域上稳定场问题的求解 159
习题3.3 160
3.4 施图姆-刘维尔本征值问题 160
3.4.1 施图姆-刘维尔本征值问题的概念 161
3.4.2 本征函数族的正交性与广义傅里叶级数 162
习题3.4 163
第4章 二阶线性常微分方程 165
4.1 线性齐次常微分方程解的线性相关性 165
习题4.1 167
4.2 二阶齐次常微分方程的级数解法 167
4.2.1 方程正常点邻域内的解 168
4.2.2 方程奇点邻域内的解 171
4.2.3 级数解法小结 179
习题4.2 180
4.3 二阶非齐次常微分方程 180
第5章 三维曲线坐标系下分离变量法与特殊函数 183
5.1 正交曲线坐标系 184
习题5.1 187
5.2 球坐标系下拉普拉斯方程定解问题求解 187
5.2.1 勒让德多项式及轴对称系统拉普拉斯方程的求解 190
5.2.2 缔合勒让德函数与一般球函数 203
习题5.2 208
5.3 柱坐标系下拉普拉斯方程定解问题求解 209
5.3.1 整数阶贝塞尔方程及其解 212
5.3.2 m-阶贝塞尔函数Jm(x)及诺伊曼函数Nm(x)的性质 217
5.3.3 虚宗量贝塞尔方程及其解 218
5.3.4 贝塞尔方程的本征值问题 220
5.3.5 柱状体系中拉普拉斯方程求解范例 224
习题5.3 228
5.4 亥姆霍兹方程在球坐标系和柱坐标系下的求解问题 228
5.4.1 球坐标系下亥姆霍兹方程的求解 228
5.4.2 柱坐标系下亥姆霍兹方程的求解 235
习题5.4 235
5.5 贝塞尔函数的应用 235
习题5.5 238
第6章 格林函数法 239
6.1 无界空间泊松方程的格林函数 241
习题6.1 242
6.2 镜像法求解格林函数 243
习题6.2 246
6.3 不同边值问题的格林函数 246
6.4 亥姆霍兹方程的格林函数 248
习题6.4 251
6.5 波动方程的格林函数求解 251
主要参考书目 254
索引 255
Baidu
map