注册 登录 进入教材巡展
#
  • #

出版时间:2017-12

出版社:华中科技大学出版社

以下为《微积分 Ⅱ(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 华中科技大学出版社
  • 9787568028400
  • 1-1
  • 205231
  • 63231517-2
  • 平装
  • 16开
  • 2017-12
  • 176
  • 理学
  • 数学
  • O172
  • 金融学、经济数学、金融管理等
  • 本科
作者简介
教授
查看全部
内容简介
本书采用学生易于接受的知识结构和英语表述方式,科学、系统地介绍了微积分(下册)中无穷级数、偏导数和二重积分、微分方程、差分方程等知识。强调通用性和适用性,兼顾先进性。本书起点低,难度坡度适中,语言简洁明了,不仅适用于课堂教学使用,同时也适用于自学自习。全书有关键词索引,习题按小节配置,题量适中,题型全面,书后附有答案。
本书读者对象为高等院校理工、财经、医药、农林等专业大学生和教师,特别适合作为中外合作办学的国际教育班的学生以及准备出国留学深造学子的参考书。
目录
Chapter 7 Infinite Series(1)
7.1 Series(1)
Exercises 7.1(5)
7.2 Series with Positive Terms(7)
7.2.1 The Comparison Tests(7)
7.2.2 The Root and Ratio Tests(11)
Exercises 7.2(14)
7.3 Alternating Series and Absolute Convergence(15)
7.3.1 Alternating Series (15)
7.3.2 Absolute Convergence(18)
Exercises 7.3(19)
7.4 Power Series(20)
Exercises 7.4(26)
7.5 Differentiation and Integration of Power Series(27)
Exercises 7.5(30)
7.6 Taylor Series(31)
7.6.1 The Taylor Polynomials at x=0 (or Maclaurin Polynomials)(31)
7.6.2 The Taylor’s series(or Maclaurin series) for function f at 0 (32)
7.6.3 The Taylor’s series for function f at a (an arbitrary real number)(33)
Exercises 7.6(38)

Chapter 8 Partial Derivatives and Double Integrals(39)
8.1 Functions of Two Variables(39)
Exercises 8.1(45)
8.2 Limits and Continuity(45)
8.2.1 Limits(45)
8.2.2 Continuity(48)
Exercises 8.2(50)
8.3 Partial Derivatives(51)
8.3.1 Definition(51)
8.3.2 Economical Interpretations of Partial Derivatives(55)
8.3.3 Geometric Interpretations of Partial Derivatives(56)
Exercises 8.3(57)
8.4 Strategy for Finding Partial Derivatives(58)
8.4.1 The Chain Rule(58)
8.4.2 Implicit Differentiation(62)
8.4.3 Higher Derivatives(64)
Exercises 8.4(66)
8.5 Total Differentials(68)
8.5.1 Definition(68)
8.5.2 Relations between Continuity, Partial Derivatives, and Differentiability(69)
8.5.3 Rules for Finding Total Differentials(70)
8.5.4 The Invariance of First Order Total Differential Form(71)
Exercises 8.5(73)
8.6 Extremum of Functions of Two Variables(74)
8.6.1 Locating Maxima and Minima(74)
8.6.2 Methods of Finding Absolute Maxima and Minima(78)
8.6.3 Methods of Finding Conditional Extremum(79)
Exercises 8.6(82)
8.7 Directional Derivatives and The Gradient Vector(83)
8.7.1 Vectors and Vector Operations(83)
8.7.2 Directional Derivatives and The Gradient Vector(85)
8.7.3 The Relation between Directional Derivatives and The Gradient Vector(88)
Exercises 8.7(90)
8.8 Double Integrals(91)
8.8.1 Definition and Properties(91)
8.8.2 Double Integrals in Rectangular Coordinates(94)
8.8.3 Polar Coordinates(102)
8.8.4 Double Integrals in Polar Coordinates(106)
8.8.5 Application of Double Integrals(108)
Exercises 8.8(109)

Chapter 9 Differential Equations(112)
9.1 Introduction(112)
Exercises 9.1(114)
9.2 FirstOrder Linear Differential Equations(114)
9.2.1 Separable Equations(115)
9.2.2 Homogeneous Differential Equations(117)
9.2.3 FirstOrder Linear Differential Equations(118)
9.2.4 Total (or Exact) Differential Equations(121)
9.2.5 Bernoulli Equations(Equations reducible to a linear one)(123)
9.2.6 Euler Equations(124)
Exercises 9.2(126)
9.3 Secondorder Differential Equations(127)
9.3.1 Reducible SecondOrder Differential Equations(127)
9.3.2 Complex Numbers (129)
9.3.3 Homogeneous Linear Equations(133)
9.3.4 Nonhomogeneous Linear Equations(137)
Exercises 9.3(142)

Chapter 10 Difference Equations(143)
10.1 Introduction (143)
10.1.1 Definition(143)
10.1.2 Properties(144)
Exercises 10.1(147)
10.2 Linear Difference Equations(147)
10.2.1 nthOrder Difference Equations(147)
10.2.2 FirstOrder Difference Equations(149)
10.2.3 SecondOrder Difference Equations(156)
Exercises 10.2(161)
Baidu
map