数据挖掘与商务分析:R语言 / 数据科学与工程技术丛书
¥69.00定价
作者: [美]约翰尼斯·莱道尔特著
译者:宋涛、王星等 译;
出版时间:2016-10
出版社:机械工业出版社
- 机械工业出版社
- 9787111549406
- 1-1
- 183019
- 45176951-7
- 平装
- 16开
- 2016-10
- 351
- 283
- 工学
- 计算机科学与技术
- TP274
- 计算机
- 本科
内容简介
从海量的数据中收集、分析、提取有价值的信息需要功能强大的分析工具,本书结合R软件详细介绍了数据挖掘和数据分析的宴用方法,主要内容包括处理信息和获取数据、标准线性回归、局部多项式回归、统计建模中简约的重要性、Logistic回归、贝叶斯分析、多项式Logistic回归、决策树、聚类、购物篮分析、降维和网络数据等。书后配有练习并且书中所有例子涉及的数据集和R代码可以从本书配套网站获取。
约翰尼斯·莱道尔特著的《数据挖掘与商务分析(R语言)》适用于数据分析相关专业学生和教师以及R语言使用者。
约翰尼斯·莱道尔特著的《数据挖掘与商务分析(R语言)》适用于数据分析相关专业学生和教师以及R语言使用者。
目录
译者序
前言
致谢
第1章 引言
参考文献
第2章 处理信息与认识数据
2.1 例1:2006年出生数据
2.2 例2:校友捐赠
2.3 例3:橘子汁
参考文献
第3章 标准线性回归
3.1 用R函数估算线性回归模型
3.2 例1:汽车燃油效率
3.3 例2:丰田二手车价格
附录3.A模型过度拟合对回归预测均方误差的影响
参考文献
第4章 局部多项式回归的非参数回归方法
4.1 模型的选择
4.2 密度估计和直方图平滑化的应用
4.3 多重回归模型的拓展
4.4 例题和软件
4.4.1 例1:老忠实喷泉
4.4.2 例2:NOx排放物
参考文献
第5章 简约在统计建模中的重要性
5.1 怎样防止低假阳率
参考文献
第6章 多参数回归模型中基于惩罚算法的变量选择
6.1 例1:前列腺癌
6.2 例2:橙汁
参考文献
第7章 Logistic回归
7.1 对二分类响应数据建立线性模型
7.2 Logistic回归模型中回归系数的解释
7.3 统计推断
7.4 对新样例的分类
7.5 用R语言估计
7.6 例1:死刑数据
7.6.1 二分类Logistic回归:Minitab程序输出
7.6.2 R语言输出结果的解释与分析
7.7 例2:延误的航班
7.8 例3:贷款验收
7.9 例4:德国信贷数据
参考文献
第8章 二元分类、概率和分类性能的评价
8.1 二元分类
8.2 使用概率作决策
8.3 灵敏度和特异度
8.4 例子:德国信贷数据
第9章 最近邻分析分类
9.1 k近邻算法
9.2 例1:玻璃碎片的法医分析
9.3 例2:德国信贷数据
参考文献
第10章 朴素贝叶斯分析:一种由以分类为主的变量对分类响应变量预测的模型
10.1 例:航班延误
参考文献
第11章 多项式Logistic回归
11.1 计算软件
11.2 例1:玻璃碎片的法医分析
11.3 例2:重温玻璃碎片的法医分析
附录11.A简单三重矩阵的详述
参考文献
第12章 分类和判别分析的深入探讨
12.1 Fisher线性判别函数
12.2 例1:德国信用卡数据
12.3 例2:Fisher鸢尾花数据
12.4 例3:玻璃碎片的法医分析数据
12.5 例4:MBA申请数据
参考文献
第13章 决策树
13.1 例1:前列腺癌
13.2 例2:摩托车加速度
13.3 例3:回顾Fisher鸢尾花数据集
第14章 回归、分类树、计算软件及其他实用分类方法的深入探讨
14.1 有关树结构的R程序包
14.2 卡方自动交互检验
14.3 集成方法:Bagging算法、Boosting算法和随机森林
14.4 支持向量机
14.5 神经网络
14.6 R程序包:关于数据挖掘的一个有用的图形用户界面
参考文献
第15章 聚类
15.1 k均值聚类
15.2 另眼看聚类:将期望最大化算法应用于混合正态分布
15.2.1 E步
15.2.2 M步
15.3 层次聚类过程
参考文献
第16章 购物篮分析:关联规则和提升度
16.1 例1:在线广播
16.2 例2:收入预测
参考文献
第17章 降维:因子模型和主成分分析
17.1 例1:欧洲蛋白质的摄入数据
17.2 例2:月度失业率数据
第18章 带多重共线性输入的降维回归:主成分回归和偏最小二乘法
18.1 三个例子
18.1.1 例1:模拟数据
18.1.2 例2:基于50个州的历史失业率预测某州下个月的失业率
18.1.3 例3:预测下月失业率:比较不同方法样本外预测效果
参考文献
第19章 文本数据:文本挖掘和情感分析
19.1 逆多项式Logistic回归
19.2 例1:餐馆评论
19.3 例2:政治主张
附录19.A Gentzkow/Shapiro关于“slant”的估计和偏最小二乘的关系
参考文献
第20章 网络数据
20.1 例1:15世纪佛罗伦萨的婚姻与权力
20.2 例2:友谊网络的连接
参考文献
附录A练习
附录B参考文献
前言
致谢
第1章 引言
参考文献
第2章 处理信息与认识数据
2.1 例1:2006年出生数据
2.2 例2:校友捐赠
2.3 例3:橘子汁
参考文献
第3章 标准线性回归
3.1 用R函数估算线性回归模型
3.2 例1:汽车燃油效率
3.3 例2:丰田二手车价格
附录3.A模型过度拟合对回归预测均方误差的影响
参考文献
第4章 局部多项式回归的非参数回归方法
4.1 模型的选择
4.2 密度估计和直方图平滑化的应用
4.3 多重回归模型的拓展
4.4 例题和软件
4.4.1 例1:老忠实喷泉
4.4.2 例2:NOx排放物
参考文献
第5章 简约在统计建模中的重要性
5.1 怎样防止低假阳率
参考文献
第6章 多参数回归模型中基于惩罚算法的变量选择
6.1 例1:前列腺癌
6.2 例2:橙汁
参考文献
第7章 Logistic回归
7.1 对二分类响应数据建立线性模型
7.2 Logistic回归模型中回归系数的解释
7.3 统计推断
7.4 对新样例的分类
7.5 用R语言估计
7.6 例1:死刑数据
7.6.1 二分类Logistic回归:Minitab程序输出
7.6.2 R语言输出结果的解释与分析
7.7 例2:延误的航班
7.8 例3:贷款验收
7.9 例4:德国信贷数据
参考文献
第8章 二元分类、概率和分类性能的评价
8.1 二元分类
8.2 使用概率作决策
8.3 灵敏度和特异度
8.4 例子:德国信贷数据
第9章 最近邻分析分类
9.1 k近邻算法
9.2 例1:玻璃碎片的法医分析
9.3 例2:德国信贷数据
参考文献
第10章 朴素贝叶斯分析:一种由以分类为主的变量对分类响应变量预测的模型
10.1 例:航班延误
参考文献
第11章 多项式Logistic回归
11.1 计算软件
11.2 例1:玻璃碎片的法医分析
11.3 例2:重温玻璃碎片的法医分析
附录11.A简单三重矩阵的详述
参考文献
第12章 分类和判别分析的深入探讨
12.1 Fisher线性判别函数
12.2 例1:德国信用卡数据
12.3 例2:Fisher鸢尾花数据
12.4 例3:玻璃碎片的法医分析数据
12.5 例4:MBA申请数据
参考文献
第13章 决策树
13.1 例1:前列腺癌
13.2 例2:摩托车加速度
13.3 例3:回顾Fisher鸢尾花数据集
第14章 回归、分类树、计算软件及其他实用分类方法的深入探讨
14.1 有关树结构的R程序包
14.2 卡方自动交互检验
14.3 集成方法:Bagging算法、Boosting算法和随机森林
14.4 支持向量机
14.5 神经网络
14.6 R程序包:关于数据挖掘的一个有用的图形用户界面
参考文献
第15章 聚类
15.1 k均值聚类
15.2 另眼看聚类:将期望最大化算法应用于混合正态分布
15.2.1 E步
15.2.2 M步
15.3 层次聚类过程
参考文献
第16章 购物篮分析:关联规则和提升度
16.1 例1:在线广播
16.2 例2:收入预测
参考文献
第17章 降维:因子模型和主成分分析
17.1 例1:欧洲蛋白质的摄入数据
17.2 例2:月度失业率数据
第18章 带多重共线性输入的降维回归:主成分回归和偏最小二乘法
18.1 三个例子
18.1.1 例1:模拟数据
18.1.2 例2:基于50个州的历史失业率预测某州下个月的失业率
18.1.3 例3:预测下月失业率:比较不同方法样本外预测效果
参考文献
第19章 文本数据:文本挖掘和情感分析
19.1 逆多项式Logistic回归
19.2 例1:餐馆评论
19.3 例2:政治主张
附录19.A Gentzkow/Shapiro关于“slant”的估计和偏最小二乘的关系
参考文献
第20章 网络数据
20.1 例1:15世纪佛罗伦萨的婚姻与权力
20.2 例2:友谊网络的连接
参考文献
附录A练习
附录B参考文献