注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2013-08-09

出版社:高等教育出版社

以下为《动力系统引论》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040375855
  • 1版
  • 152422
  • 46254153-3
  • 平装
  • 16开
  • 2013-08-09
  • 250
  • 280
  • 理学
  • 数学
  • O19
  • 数学类
  • 本科 研究生及以上
作者简介

Michael Brin是马里兰大学的数学教授,发表论文3余篇,其中3篇发表在国际顶尖期刊Annals of Mathematics。Brin教授也是Forum Mathematicum的编委之一。

Garrett Stuck曾是马里兰大学的数学教授,目前在结构性融资领域工作。他曾与别人合作多本教科书,包括《数学初级读本》(The Mathematica Primer,剑桥大学出版社,1998)。 Stuck博士也是Chalkfree软件公司的创始人。

查看全部
内容简介

Introduction to Dynamical Systems, 1st Edition, ISBN: 9780521808415 by Michael Brin, Garrett Stuck,

first published by Cambridge University Press 2002.

All rights reserved.

This simplified Chinese translation edition for the People’s Republic of China is published by

arrangement with the Press Syndicate of the University of Cambridge, Cambridge, United Kingdom.

© Cambridge University Press & Higher Education Press Limited Company 2013.

This book is in copyright. No reproduction of any part may take place without the written permission

of Cambridge University Press or Higher Education Press Limited Company.

This edition is for sale in the mainland of China only, excluding Hong Kong SAR, Macao SAR and

Taiwan, and may not be bought for export therefrom.

目录

 前辅文
 第1章 例子与基本概念
  1.1 动力系统的概念
  1.2 圆周旋转
  1.3 圆周扩张自同态
  1.4 移位与子移位
  1.5 二次映射
  1.6 Gauss变换
  1.7 双曲环面自同构
  1.8 马蹄
  1.9 螺线管
  1.10 流与微分方程
  1.11 扭扩与截面
  1.12 混沌与Lyapunov 指数
  1.13 吸引子
 第2章 拓扑动力学
  2.1 极限集与回复
  2.2 拓扑传递性
  2.3 拓扑混合性
  2.4 可扩性
  2.5 拓扑熵
  2.6 某些例子的拓扑熵
  2.7 等度连续性、远距性与邻近性
  2.8 拓扑回复在Ramsey 理论中的应用
 第3章 符号动力学
  3.1 子移位与编码
  3.2 有限型子移位
  3.3 Perron-Frobenius 定理
  3.4 拓扑熵与SFT$\zeta$ 函数
  3.5 强移位等价性与移位等价性
  3.6 代换
  3.7 Sofic 移位
  3.8 数据存储
 第4章 遍历理论
  4.1 测度论预备知识
  4.2 回复
  4.3 遍历性与混合性
  4.4 例子
  4.5 遍历定理
  4.6 连续映射的不变测度
  4.7 唯一遍历性与Weyl 定理
  4.8 重温Gauss 变换
  4.9 离散谱
  4.10 弱混合
  4.11 测度论回归在数论中的应用
  4.12 网络搜索
 第5章 双曲动力学
  5.1 重温扩张自同态
  5.2 双曲集
  5.3 $\varepsilon$轨道
  5.4 不变锥
  5.5 双曲集的稳定性
  5.6 稳定与不稳定流形
  5.7 倾角引理
  5.8 马蹄与横截同宿点
  5.9 局部积结构与局部混合双曲集
  5.10 Anosov 微分同胚
  5.11 公理A 与结构稳定性
  5.12 Markov 分割
  5.13 附录: 微分流形
 第6章 Anosov 微分同胚的遍历性
  6.1 稳定与不稳定分布的H\" o lder 连续性
  6.2 稳定与不稳定叶层的绝对连续性
  6.3 遍历性证明
 第7章 低维动力学
  7.1 圆周同胚
  7.2 圆周微分同胚
  7.3 Sharkovsky 定理
  7.4 逐段单调映射的组合理论
  7.5 Schwarz 导数
  7.6 实二次映射
  7.7 周期点分支
  7.8 Feigenbaum 现象
 第8章 复动力学
  8.1 Riemann 球面上的复分析
  8.2 例子
  8.3 正规族
  8.4 周期点
  8.5 Julia 集
  8.6 Mandelbrot 集
 第9章 测度论熵
  9.1 分割的熵
  9.2 条件熵
  9.3 保测变换的熵
  9.4 计算熵的例子
  9.5 变分原理
 参考文献
 索引

Baidu
map