注册 登录 进入教材巡展
#
  • #

出版时间:2014-09

出版社:华中科技大学出版社

以下为《数值计算理论与实现》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 华中科技大学出版社
  • 9787568000536
  • 144214
  • 2014-09
  • O241
内容简介

  《数值计算理论与实现》介绍了数值计算的基本思路与方法,内容涵盖了非线性方程求根、线性方程组求解、矩阵本征值、插值与拟合、数值微分和积分以及常微分方程等方面。全书结构完整,叙述详细,读者阅读本书可以全面了解数值计算基础理论。另外,书中还穿插讲解了大量的算法实现程序代码,这些程序代码由作者陈长军在多年教学过程中积累而来,作者力求兼顾这些程序代码的执行效率和可阅读性,这些代码都依章节整合起来,非常方便调试,它们可以帮助读者学以致用,快速掌握现代计算方法。

目录
第一章 绪论
 第1节 数值计算简介
 第2节 编程语言
 第3节 误差分析
第二章 非线性方程寻根与函数优化
 第1节 二分法
 第2节 Jacobi迭代法
 第3节 Jacobi迭代改进算法
 第4节 Newton迭代法
 第5节 最速下降法和Newton-Rapllson方法
 第6节 优化算法应用实例
第三章 线性方程组
 第1节 Gauss消元法
 第2节 LU分解法
 第3节 Jacobi、Gauss-Seidel和松弛迭代法
第四章 本征值问题
 第l节 Jacobi迭代法
 第2节 QR分解法
 第3节 三对角化方法
 第4节 广义本征值问题
第五章 插值与拟合
 第1节 Lagrange插值
 第2节 Newton插值
 第3节 Hermite插值
 第4节 样条曲线插值
 第5节 二维插值
 第6节 数值拟合
第六章 数值微分和积分
 第1节 数值求导
 第2节 机械积分
 第3节 插值积分
 第4节 复化积分
 第5节 Gauss积分
第七章 微分方程
 第1节 单步方法
 第2节 多步方法
 第3节 Runge-Kutta方法
 第4节 线性多步法
 第5节 算法稳定性分析
 第6节 高阶微分方程
附录(快速傅立叶变换程序)
参考文献
Baidu
map