量子相变(第2版)(英文版)
¥119.00定价
作者: [美]萨奇德夫
出版时间:2015-01
出版社:世界图书出版公司
- 世界图书出版公司
- 9787510084478
- 126413
- 2015-01
- O4
内容简介
萨奇德夫所著的《量子相变(第2版)(英文版)》是第一本系统介绍量子相变理论的专著,其中部分内容也可作研究生教材。本书内容新颖,涉及凝聚态物理学中广泛关注的许多重要问题。本书叙述简明,将理论模型的阐述与最新实验结果的介绍密切结合。书中着重描写和阐述存在量子相变的一些最简单的相互作用系统的物理性质。全书大部分均忽略了无序效应,而把注意力集中在这样一些系统在非零温度下的动力学性质,深入讨论了以非弹性碰撞为主的量子动力学及输运过程。
目录
From the Preface to the first edition
Preface to the second edition
Part I Introduction
1 Basic concepts
1.1 What is a quantum phase transition?
1.2 Nonzero temperature transitions and crossovers
1.3 Experimental examples
1.4 Theoretical models
1.4.1 Quantum Ising model
1.4.2 Quantum rotor model
1.4.3 Physical realizations of quantum rotors
2 Overview
2.1 Quantum field theories
2.2 What's different about quantum transitions?
Part II A first course
3 Classical phase transitions
3.1 Mean-field theory
3.2 Landau theory
3.3 Fluctuations and perturbation theory
3.3.1 Gaussian integrals
3.3.2 Expansion for susceptibility
Exercises
4 The renormalization group
4.1 Gaussian theory
4.2 Momentum shell RG
4.3 Field renormalization
4.4 Correlation functions
Exercises
5 The quantum Ising model
5.1 Effective Hamiltonian method
5.2 Large-g expansion
5.2.1 One-particle states
5.2.2 Two-particle states
5.3 Small-g expansion
5.3.1 d=2
5.3.2 d=l
5.4 Review
5.5 The classical Ising chain
5.5.1 The scaling limit
5.5.2 Universality
5.5.3 Mapping to a quantum model: Ising spin in a transverse field
5.6 Mapping of the quantum Ising chain to a classical Ising model
Exercises
6 The quantum rotor model
6.1 Large-g expansion
6.2 Small-g expansion
6.3 The classical XY chain and an O(2) quantum rotor
6.4 The classical Heisenberg chain and an O(3) quantum rotor
6.5 Mapping to classical field theories
6.6 Spectrum of quantum field theory
6.6.1 Paramagnet
6.6.2 Quantum critical point
6.6.3 Magnetic order
Exercises
7 Correlations, susceptibilities, and the quantum critical point
7.1 Spectral representation
7.1.1 Structure factor
7.1.2 Linear response
7.2 Correlations across the quantum critical point
7.2.1 Paramagnet
7.2.2 Quantum critical point
7.2.3 Magnetic order
Exercises
8 Broken symmetries
8.1 Discrete symmetry and surface tension
8.2 Continuous symmetry and the helicity modulus
8.2.1 Order parameter correlations
8.3 The London equation and the superfluid density
8.3.1 The rotor model
Exercises
9 Boson Hubbard model
9.1 Mean-field theory
9.2 Coherent state path integral
9.2.1 Boson coherent states
9.3 Continuum quantum field theories
Exercises
Part III Nonzero temperatures
10 The Ising chain in a transverse field
10.1 Exact spectrum
10.2 Continuum theory and scaling transformations
10.3 Equal-time correlations of the order parameter
10.4 Finite temperature crossovers
10.4.1 Low T on the magnetically ordered side, A > 0, T << A
10.4.2 Low T on the quantum paramagnetic side, A < 0, T << |△|
10.4.3 Continuum high T, T >> |△|
10.4.4 Summary
11 Quantum rotor models: large-N limit
11.1 Continuum theory and large-N limit
11.2 Zero temperature
11.2.1 Quantum paramagnet, g > gc
11.2.2 Critical point, g = gc
11.2.3 Magnetically ordered ground state, g < gc
11.3 Nonzero temperatures
11.3.1 Low T on the quantum paramagnetic side, g > gc, T << △+
11.3.2 High T, T>>△+, △_
11.3.3 Low T on the magnetically ordered side, g < gc, T << △_
11.4 Numerical studies
12 The d = 1, 0(N > 3) rotor models
12.1 Scaling analysis at zero temperature
12.2 Low-temperature limit of the continuum theory, T << △+
12.3 High-temperature limit of the continuum theory, △+ << T << J
12.3.1 Field-theoretic renormalization group
12.3.2 Computation of Xu
12.3.3 Dynamics
12.4 Summary
13 The d = 2, 0(N ≥ 3) rotor models
13.1 Low T on the magnetically ordered side, T << ρs
13.1.1 Computation of ξc
13.1.2 Computation of τ
13.1.3 Structure of correlations
13.2 Dynamics of the quantum paramagnetic and high-T regions
13.2.1 Zero temperature
13.2.2 Nonzero temperatures
13.3 Summary
14 Physics dose to and above the upper-critical dimension
14.1 Zero temperature
14.1.1 Tricritical crossovers
14.1.2 Field-theoretic renormalization group
14.2 Statics at nonzero temperatures
14.2.1 d < 3
14.2.2 d > 3
14.3 Order parameter dynamics in d = 2
14.4 Applications and extensions
15 Transport in d = 2
15.1 Perturbation theory
15.1.1 σ1
15.1.2 σ11
15.2 Collisionless transport equations
15.3 Collision-dominated transport
15.3.1 ε expansion
15.3.2 Large-N limit
15.4 Physical interpretation
15.5 The AdS/CFT correspondence
15.5.1 Exact results for quantum critical transport
15.5.2 Implications
15.6 Applications and extensions
Part IV Other models
16 Dilute Fermi and Bose gases
16.1 Thequantum XX model
16.2 The dilute spinless Fermi gas
16.2.1 Dilute classical gas, kBT << |μ|, μ < 0
16.2.2 Fermi liquid, kBT <<μ, μ > 0
16.2.3 High-T limit, kBT >> |μ|
16.3 The dilute Bose gas
16.3.1 d < 2
16.3.2 d = 3
16.3.3 Correlators of ZB in d = 1
16.4 The dilute spinful Fermi gas: the Feshbach resonance
16.4.1 The Fermi-Bose model
16.4.2 Large-N expansion
16.5 Applications and extensions
17 Phase transitions of Dirac fermions
17.1 d-wave superconductivity and Dirac fermions
17.2 Time-reversal symmetry breaking
17.3 Field theory and RG analysis
17.4 Ising-nematic ordering
18 Fermi liquids, and their phase transitions
18.1 Fermi liquid theory
18.1.1 Independence of choice of k0
18.2 Ising-nematic ordering
18.2.1 Hertz theory
18.2.2 Fate of the fermions
18.2.3 Non-Fermi liquid criticality in d = 2
18.3 Spin density wave order
18.3.1 Mean-field theory
18.3.2 Continuum theory
18.3.3 Hertz theory
18.3.4 Fate of the fermions
18.3.5 Critical theory in d = 2
18.4 Nonzero temperature crossovers
18.5 Applications and extensions
19 Heisenberg spins: fetromagnets and antiferromagnets
19.1 Coherent state path integral
19.2 Quantized ferromagnets
19.3 Antiferromagnets
19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model
19.3.2 Collinear antiferromagnetism in d = 1
19.3.3 Collinear antiferromagnetism in d = 2
19.3.4 Noncollinear antiferromagnetism in d= 2: deconfined spinons and visons
19.3.5 Deconfined criticality
19.4 Partial polarization and canted states
19.4.1 Quantum paramagnet
19.4.2 Quantized ferromagnets
19.4.3 Canted and Neel states
19.4.4 Zero temperature critical properties
19.5 Applications and extensions
20 Spin chains: bosonization
20.1 The XX chain revisited: bosonization
20.2 Phases of H12
20.2.1 Sine-Gordon model
20.2.2 Tomonaga-Luttinger liquid
20.2.3 Valence bond solid order
20.2.4 Neel order
20.2.5 Models with SU(2) (Heisenberg) symmetry
20.2.6 Critical properties near phase boundaries
20.3 O(2) rotor model in d = 1
20.4 Applications and extensions
21 Magnetic ordering transitions of disordered systems
21.1 Stability of quantum critical points in disordered systems
21.2 Griffiths-McCoy singularities
21.3 Perturbative field-theoretic analysis
21.4 Metallic systems
21.5 Quantum Ising models near the percolation transition
21.5.1 Percolation theory
21.5.2 Classical dilute Ising models
21.5.3 Quantum dilute Ising models
21.6 The disordered quantum Ising chain
21.7 Discussion
21.8 Applications and extensions
22 Quantum spin glasses
22.1 The effective action
22.1.1 Metallic systems
22.2 Mean-field theory
22.3 Applications and extensions
References
Index
Preface to the second edition
Part I Introduction
1 Basic concepts
1.1 What is a quantum phase transition?
1.2 Nonzero temperature transitions and crossovers
1.3 Experimental examples
1.4 Theoretical models
1.4.1 Quantum Ising model
1.4.2 Quantum rotor model
1.4.3 Physical realizations of quantum rotors
2 Overview
2.1 Quantum field theories
2.2 What's different about quantum transitions?
Part II A first course
3 Classical phase transitions
3.1 Mean-field theory
3.2 Landau theory
3.3 Fluctuations and perturbation theory
3.3.1 Gaussian integrals
3.3.2 Expansion for susceptibility
Exercises
4 The renormalization group
4.1 Gaussian theory
4.2 Momentum shell RG
4.3 Field renormalization
4.4 Correlation functions
Exercises
5 The quantum Ising model
5.1 Effective Hamiltonian method
5.2 Large-g expansion
5.2.1 One-particle states
5.2.2 Two-particle states
5.3 Small-g expansion
5.3.1 d=2
5.3.2 d=l
5.4 Review
5.5 The classical Ising chain
5.5.1 The scaling limit
5.5.2 Universality
5.5.3 Mapping to a quantum model: Ising spin in a transverse field
5.6 Mapping of the quantum Ising chain to a classical Ising model
Exercises
6 The quantum rotor model
6.1 Large-g expansion
6.2 Small-g expansion
6.3 The classical XY chain and an O(2) quantum rotor
6.4 The classical Heisenberg chain and an O(3) quantum rotor
6.5 Mapping to classical field theories
6.6 Spectrum of quantum field theory
6.6.1 Paramagnet
6.6.2 Quantum critical point
6.6.3 Magnetic order
Exercises
7 Correlations, susceptibilities, and the quantum critical point
7.1 Spectral representation
7.1.1 Structure factor
7.1.2 Linear response
7.2 Correlations across the quantum critical point
7.2.1 Paramagnet
7.2.2 Quantum critical point
7.2.3 Magnetic order
Exercises
8 Broken symmetries
8.1 Discrete symmetry and surface tension
8.2 Continuous symmetry and the helicity modulus
8.2.1 Order parameter correlations
8.3 The London equation and the superfluid density
8.3.1 The rotor model
Exercises
9 Boson Hubbard model
9.1 Mean-field theory
9.2 Coherent state path integral
9.2.1 Boson coherent states
9.3 Continuum quantum field theories
Exercises
Part III Nonzero temperatures
10 The Ising chain in a transverse field
10.1 Exact spectrum
10.2 Continuum theory and scaling transformations
10.3 Equal-time correlations of the order parameter
10.4 Finite temperature crossovers
10.4.1 Low T on the magnetically ordered side, A > 0, T << A
10.4.2 Low T on the quantum paramagnetic side, A < 0, T << |△|
10.4.3 Continuum high T, T >> |△|
10.4.4 Summary
11 Quantum rotor models: large-N limit
11.1 Continuum theory and large-N limit
11.2 Zero temperature
11.2.1 Quantum paramagnet, g > gc
11.2.2 Critical point, g = gc
11.2.3 Magnetically ordered ground state, g < gc
11.3 Nonzero temperatures
11.3.1 Low T on the quantum paramagnetic side, g > gc, T << △+
11.3.2 High T, T>>△+, △_
11.3.3 Low T on the magnetically ordered side, g < gc, T << △_
11.4 Numerical studies
12 The d = 1, 0(N > 3) rotor models
12.1 Scaling analysis at zero temperature
12.2 Low-temperature limit of the continuum theory, T << △+
12.3 High-temperature limit of the continuum theory, △+ << T << J
12.3.1 Field-theoretic renormalization group
12.3.2 Computation of Xu
12.3.3 Dynamics
12.4 Summary
13 The d = 2, 0(N ≥ 3) rotor models
13.1 Low T on the magnetically ordered side, T << ρs
13.1.1 Computation of ξc
13.1.2 Computation of τ
13.1.3 Structure of correlations
13.2 Dynamics of the quantum paramagnetic and high-T regions
13.2.1 Zero temperature
13.2.2 Nonzero temperatures
13.3 Summary
14 Physics dose to and above the upper-critical dimension
14.1 Zero temperature
14.1.1 Tricritical crossovers
14.1.2 Field-theoretic renormalization group
14.2 Statics at nonzero temperatures
14.2.1 d < 3
14.2.2 d > 3
14.3 Order parameter dynamics in d = 2
14.4 Applications and extensions
15 Transport in d = 2
15.1 Perturbation theory
15.1.1 σ1
15.1.2 σ11
15.2 Collisionless transport equations
15.3 Collision-dominated transport
15.3.1 ε expansion
15.3.2 Large-N limit
15.4 Physical interpretation
15.5 The AdS/CFT correspondence
15.5.1 Exact results for quantum critical transport
15.5.2 Implications
15.6 Applications and extensions
Part IV Other models
16 Dilute Fermi and Bose gases
16.1 Thequantum XX model
16.2 The dilute spinless Fermi gas
16.2.1 Dilute classical gas, kBT << |μ|, μ < 0
16.2.2 Fermi liquid, kBT <<μ, μ > 0
16.2.3 High-T limit, kBT >> |μ|
16.3 The dilute Bose gas
16.3.1 d < 2
16.3.2 d = 3
16.3.3 Correlators of ZB in d = 1
16.4 The dilute spinful Fermi gas: the Feshbach resonance
16.4.1 The Fermi-Bose model
16.4.2 Large-N expansion
16.5 Applications and extensions
17 Phase transitions of Dirac fermions
17.1 d-wave superconductivity and Dirac fermions
17.2 Time-reversal symmetry breaking
17.3 Field theory and RG analysis
17.4 Ising-nematic ordering
18 Fermi liquids, and their phase transitions
18.1 Fermi liquid theory
18.1.1 Independence of choice of k0
18.2 Ising-nematic ordering
18.2.1 Hertz theory
18.2.2 Fate of the fermions
18.2.3 Non-Fermi liquid criticality in d = 2
18.3 Spin density wave order
18.3.1 Mean-field theory
18.3.2 Continuum theory
18.3.3 Hertz theory
18.3.4 Fate of the fermions
18.3.5 Critical theory in d = 2
18.4 Nonzero temperature crossovers
18.5 Applications and extensions
19 Heisenberg spins: fetromagnets and antiferromagnets
19.1 Coherent state path integral
19.2 Quantized ferromagnets
19.3 Antiferromagnets
19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model
19.3.2 Collinear antiferromagnetism in d = 1
19.3.3 Collinear antiferromagnetism in d = 2
19.3.4 Noncollinear antiferromagnetism in d= 2: deconfined spinons and visons
19.3.5 Deconfined criticality
19.4 Partial polarization and canted states
19.4.1 Quantum paramagnet
19.4.2 Quantized ferromagnets
19.4.3 Canted and Neel states
19.4.4 Zero temperature critical properties
19.5 Applications and extensions
20 Spin chains: bosonization
20.1 The XX chain revisited: bosonization
20.2 Phases of H12
20.2.1 Sine-Gordon model
20.2.2 Tomonaga-Luttinger liquid
20.2.3 Valence bond solid order
20.2.4 Neel order
20.2.5 Models with SU(2) (Heisenberg) symmetry
20.2.6 Critical properties near phase boundaries
20.3 O(2) rotor model in d = 1
20.4 Applications and extensions
21 Magnetic ordering transitions of disordered systems
21.1 Stability of quantum critical points in disordered systems
21.2 Griffiths-McCoy singularities
21.3 Perturbative field-theoretic analysis
21.4 Metallic systems
21.5 Quantum Ising models near the percolation transition
21.5.1 Percolation theory
21.5.2 Classical dilute Ising models
21.5.3 Quantum dilute Ising models
21.6 The disordered quantum Ising chain
21.7 Discussion
21.8 Applications and extensions
22 Quantum spin glasses
22.1 The effective action
22.1.1 Metallic systems
22.2 Mean-field theory
22.3 Applications and extensions
References
Index