注册 登录 进入教材巡展
#
  • #

出版时间:2007-07-13

出版社:高等教育出版社

以下为《工程力学(静力学和材料力学)(第2版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040218138
  • 2
  • 117935
  • 0045154303-7
  • 平装
  • 16开
  • 2007-07-13
  • 450
  • 358
  • 工学
  • 力学
内容简介


本书是普通高等教育“十一五”国家级规划教材,是在第1版的基础上,根据我国高等教育和教学改革的发展趋势,以及素质教育与创新精神培养的要求,在国家面向21世纪课程教学内容与体系改革项目的基础上,充分反映近年来基础力学教学第一线的新成果、新经验而修订的。


根据最新的课程教学基本要求,以及教学第一线很多教师的意见,本版的体系基本与第1版相同,在内容上作了一些调整,删去了能量法一章,将绪论改为工程力学课程概论,同时对部分内容进行了改写,在概念、原理的叙述方面作了一些改进,并按照国家标准,将名词术语、量和单位的名称、符号规范化。


本书分静力学和材料力学两篇。静力学篇包括静力学基础、力系的简化和静力学平衡问题等3章;材料力学篇包括材料力学的基本概念、轴向拉伸与压缩、圆轴扭转、弯曲强度、弯曲刚度、应力状态与强度理论、组合受力与变形杆件的强度计算、压杆的稳定性问题、动载荷与疲劳强度简述等9章。


本书可作为高等学校工科本科非机类各专业工程力学课程的教材,也可供独立学院、高职高专、成人高校师生及有关工程技术人员参考。


本书配有习题解答和课堂教学软件,免费提供给使用本教材的教师。

目录

 工程力学课程概论
  §1 工程力学与工程密切相关
  §2 工程力学的主要内容与分析模型
   2-1 工程力学的主要内容
   2-2 工程力学的两种分析模型
  §3 工程力学的分析方法
   3-1 两种不同的理论分析方法
   3-2 工程力学的实验分析方法
   3-3 工程力学的计算机分析方法
 第一篇 静力学
  第1章 静力学基础
   §1-1 力和力矩
    1-1-1 力的概念
    1-1-2 作用在刚体上的力的效应与力的可传性
    1-1-3 力对点之矩
    1-1-4 力系的概念
    1-1-5 合力矩定理
   §1-2 力偶及其性质
    1-2-1 力偶
    1-2-2 力偶的性质
    1-2-3 力偶系及其合成
   §1-3 约束与约束力
    1-3-1 约束与约束力的概念
    1-3-2 绳索约束与带约束
    1-3-3 光滑面约束
    1-3-4 光滑铰链约束
    1-3-5 滑动轴承与止推轴承
   §1-4 平衡的概念
    1-4-1 二力平衡与二力构件
    1-4-2 不平行的三力平衡条件
    1-4-3 加减平衡力系原理
   §1-5 受力分析方法与过程
    1-5-1 受力分析概述
    1-5-2 受力图绘制方法应用举例
   §1-6 结论与讨论
    1-6-1 关于约束与约束力
    1-6-2 关于受力分析
    1-6-3 关于二力构件
    1-6-4 关于静力学中某些原理的适用性
   习题
  第2章 力系的简化
   §2-1 力系等效与简化的概念
    2-1-1 力系的主矢与主矩
    2-1-2 等效的概念
    2-1-3 简化的概念
   §2-2 力系简化的基础——力向一点平移定理
   §2-3 平面力系的简化
    2-3-1 平面汇交力系与平面力偶系的合成结果
    2-3-2 平面一般力系向一点简化
    2-3-3 平面力系的简化结果
   §2-4 固定端约束的约束力
   §2-5 结论与讨论
    2-5-1 关于力的矢量性质的讨论
    2-5-2 关于平面力系简化结果的讨论
    2-5-3 关于实际约束的讨论
   习题
  第3章 静力学平衡问题
   §3-1 平面力系的平衡条件与平衡方程
    3-1-1 平面一般力系的平衡条件与平衡方程
    3-1-2 平面一般力系平衡方程的其他形式
    3-1-3 平面汇交力系与平面力偶系的平衡方程
   §3-2 简单的空间力系平衡问题
    3-2-1 力对轴之矩
    3-2-2 空间力系的简化
    3-2-3 空间力系的平衡条件
   §3-3 简单的刚体系统平衡问题
    3-3-1 刚体系统静定与静不定的概念
    3-3-2 刚体系统的平衡问题的特点与解法
   §3-4 考虑摩擦时的平衡问题
    3-4-1 滑动摩擦定律
    3-4-2 考虑摩擦时的平衡问题
   §3-5 结论与讨论
    3-5-1 关于坐标系和力矩中心的选择
    3-5-2 关于受力分析的重要性
    3-5-3 关于求解刚体系统平衡问题时应注意的几个方面
    3-5-4 摩擦角与自锁的概念
   习题
 第二篇 材料力学
  第4章 材料力学的基本概念
   §4-1 关于材料的基本假定
    4-1-1 均匀连续性假定
    4-1-2 各向同性假定
    4-1-3 小变形假定
   §4-2 弹性杆件的外力与内力
    4-2-1 外力
    4-2-2 内力与内力分量
    4-2-3 截面法
   §4-3 弹性体受力与变形特点
   §4-4 杆件横截面上的应力
    4-4-1 正应力与切应力定义
    4-4-2 应力与内力分量之间的关系
   §4-5 正应变与切应变
   §4-6 线弹性材料的应力-应变关系
   §4-7 杆件受力与变形的基本形式
    4-7-1 拉伸或压缩
    4-7-2 剪切
    4-7-3 扭转
    4-7-4 平面弯曲
    4-7-5 组合受力与变形
   §4-8 结论与讨论
    4-8-1 关于静力学模型与材料力学模型
    4-8-2 关于静力学概念与原理在材料力学中的可用性与限制性
   习题
  第5章 轴向拉伸与压缩
   §5-1 轴力与轴力图
   §5-2 拉压杆件的应力与变形
    5-2-1 应力计算
    5-2-2 变形计算
   §5-3 拉压杆件的强度计算
    5-3-1 强度条件、安全因数与许用应力
    5-3-2 三类强度计算问题
    5-3-3 强度计算举例
   §5-4 拉伸与压缩时材料的力学性能
    5-4-1 材料拉伸时的应力-应变曲线
    5-4-2 韧性材料拉伸时的力学性能
    5-4-3 脆性材料拉伸时的力学性能
    5-4-4 强度失效概念与极限应力
    5-4-5 压缩时材料的力学性能
   §5-5 结论与讨论
    5-5-1 本章的主要结论
    5-5-2 关于应力和变形公式的应用条件
    *5-5-3 加力点附近区域的应力分布
    *5-5-4 应力集中的概念
   4*5-5-5 拉伸和压缩静不定问题概述
   习题
  第6章 圆轴扭转
   §6-1 工程上传递功率的圆轴及其扭转变形
   §6-2 扭矩与扭矩图
    6-2-1 外加扭转力偶矩与功率、转速之间的关系
    6-2-2 截面法确定圆轴横截面上的扭矩
    6-2-3 扭矩的正负号规则
    6-2-4 扭矩图
   §6-3 切应力互等定理
   §6-4 圆轴扭转时的切应力分析
    6-4-1 平面假定
    6-4-2 变形协调方程
    6-4-3 弹性范围内的切应力-切应变关系
    6-4-4 静力学方程
    6-4-5 圆轴扭转时横截面上的切应力表达式
   §6-5 圆轴扭转时的强度与刚度计算
    6-5-1 圆轴扭转实验与破坏现象
    6-5-2 圆轴扭转强度计算
    6-5-3 圆轴扭转刚度计算
   §6-6 结论与讨论
    6-6-1 圆轴扭转强度与刚度计算及其他
    6-6-2 矩形截面杆扭转时的切应力
   习题
  第7章 弯曲强度
   §7-1 工程中的弯曲构件
   §7-2 剪力方程与弯矩方程
    7-2-1 弯曲时梁横截面上的剪力与弯矩
    7-2-2 剪力与弯矩的正负号规则
    7-2-3 截面法确定指定截面上的剪力和弯矩
    7-2-4 剪力方程与弯矩方程
   §7-3 剪力图与弯矩图
   §7-4 与应力分析相关的截面图形几何量
    7-4-1 静矩、形心及其相互关系
    7-4-2 惯性矩、极惯性矩、惯性积、惯性半径
    7-4-3 惯性矩与惯性积的移轴定理
    7-4-4 惯性矩与惯性积的转轴定理
    7-4-5 主轴与形心主轴、主惯性矩与形心主惯性矩
   §7-5 平面弯曲时梁横截面上的正应力
    7-5-1 平面弯曲与纯弯曲的概念
    7-5-2 纯弯曲时梁横截面上的正应力分析
    7-5-3 梁的弯曲正应力公式的应用与推广
   §7-6 平面弯曲正应力公式应用举例
   §7-7 梁的强度计算
    7-7-1 梁的失效判据
    7-7-2 梁的弯曲强度条件
    7-7-3 梁的弯曲强度计算步骤
   §7-8 结论与讨论
    7-8-1 弯矩、剪力与载荷集度之间的微分关系
    7-8-2 绘制弯矩图和剪力图时要注意的几个问题
    7-8-3 弯曲正应力公式的应用条件
    7-8-4 弯曲切应力的概念
    7-8-5 剪切与挤压假定计算
    7-8-6 提高梁强度的措施
   习题
  第8章 弯曲刚度
   §8-1 弯曲变形与位移的基本概念
    8-1-1 梁弯曲后的挠度曲线
    8-1-2 梁的挠度与转角
    8-1-3 梁的位移与约束密切相关
    8-1-4 梁的位移分析的工程意义
   §8-2 小挠度微分方程及其积分
    8-2-1 小挠度曲线微分方程
    8-2-2 积分常数的确定、约束条件与连续条件
   §8-3 工程中的叠加法
    8-3-1 叠加法应用于多个载荷作用的情形
    8-3-2 叠加法应用于间断性分布载荷作用的情形
   §8-4 简单的静不定梁
   §8-5 弯曲刚度计算
    8-5-1 弯曲刚度条件
    8-5-2 刚度计算举例
   §8-6 结论与讨论
    8-6-1 关于变形和位移的相依关系
    8-6-2 关于梁的连续光滑曲线
    8-6-3 关于求解静不定问题的讨论
    8-6-4 关于静不定结构特性的讨论
    8-6-5 提高弯曲刚度的途径
   习题
  第9章 应力状态与强度理论
   §9-1 基本概念
    9-1-1 什么是应力状态,为什么要研究应力状态
    9-1-2 怎样表示一点处的应力状态
    9-1-3 怎样建立一般应力状态下的强度条件
   §9-2 平面应力状态中任意方向面上的应力分析
    9-2-1 方向角与应力分量的正负号规则
    9-2-2 微元的局部平衡
    9-2-3 平面应力状态中任意方向面上的正应力与切应力
   §9-3 应力状态中的主应力与最大切应力
    9-3-1 主平面、主应力与主方向
    9-3-2 平面应力状态的三个主应力
    9-3-3 面内最大切应力与一点处的最大切应力
   *§9-4 分析应力状态的应力圆方法
    9-4-1 应力圆方程
    9-4-2 应力圆的画法
    9-4-3 应力圆的应用
   §9-5 一般应力状态下的应力-应变关系 应变能密度
    9-5-1 广义胡克定律
    9-5-2 各向同性材料各弹性常数之间的关系
    9-5-3 总应变能密度
    9-5-4 体积改变能密度与畸变能密度
   §9-6 一般应力状态下的强度条件
    9-6-1 第一强度理论
   *9-6-2 第二强度理论
    9-6-3 第三强度理论
    9-6-4 第四强度理论
   §9-7 结论与讨论
    9-7-1 关于应力状态的几点重要结论
    9-7-2 平衡方法是分析应力状态最重要、最基本的方法
   *9-7-3 关于应力状态的不同的表示方法
    9-7-4 正确应用广义胡克定律
    9-7-5 应用强度理论需要注意的几个问题
   习题
  第10章 组合受力与变形杆件的强度计算
   §10-1 斜弯曲
    10-1-1 产生斜弯曲的加载条件
    10-1-2 叠加法确定横截面上的正应力
    10-1-3 最大正应力与强度条件
   §10-2 拉伸(压缩)与弯曲的组合
   §10-3 弯曲与扭转的组合
    10-3-1 计算简图
    10-3-2 危险点及其应力状态
    10-3-3 强度条件与设计公式
   §10-4 薄壁容器强度设计简述
   §10-5 结论与讨论
    10-5-1 关于中性轴的讨论
    10-5-2 关于强度计算的全过程
   习题
  第11章 压杆的稳定性问题
   §11-1 压杆稳定性的基本概念
    11-1-1 平衡状态的稳定性和不稳定性
    11-1-2 临界状态与临界载荷
    11-1-3 三种类型压杆的不同临界状态
   §11-2 细长压杆的临界载荷——欧拉临界力
    11-2-1 两端铰支的细长压杆
    11-2-2 其他刚性支承细长压杆临界载荷的通用公式
   §11-3 长细比的概念 三类不同压杆的判断
    11-3-1 长细比的定义与概念
    11-3-2 三类不同压杆的区分
    11-3-3 三类压杆的临界应力公式
    11-3-4 临界应力总图与λp、λs的确定
   §11-4 压杆稳定性计算
    11-4-1 压杆稳定性计算内容
    11-4-2 安全因素法与稳定性安全条件
    11-4-3 压杆稳定性计算过程
   §11-5 压杆稳定性计算示例
   §11-6 结论与讨论
    11-6-1 稳定性计算的重要性
    11-6-2 影响压杆承载能力的因素
    11-6-3 提高压杆承载能力的主要途径
    11-6-4 稳定性计算中需要注意的几个重要问题
   习题
  第12章 动载荷与疲劳强度简述
   §12-1 等加速直线运动时构件上的惯性力与动应力
   §12-2 旋转构件的受力分析与动应力计算
   §12-3 冲击载荷与冲击应力计算
    12-3-1 计算冲击载荷的基本假定
    12-3-2 机械能守恒定律的应用
    12-3-3 冲击动荷系数
   §12-4 疲劳强度简述
    12-4-1 交变应力的有关名词和术语
    12-4-2 疲劳破坏特征
   §12-5 疲劳极限与应力-寿命曲线
   §12-6 影响疲劳极限的因素
    12-6-1 应力集中的影响——有效应力集中因数
    12-6-2 零件尺寸的影响——尺寸因数
    12-6-3 表面加工质量的影响——表面质量因数
   §12-7 基于无限寿命设计方法的疲劳强度设计
    12-7-1 构件寿命的概念
    12-7-2 无限寿命设计方法——安全因数法
    12-7-3 等幅对称应力循环下的工作安全因数
    12-7-4 等幅交变应力作用下的疲劳寿命估算
   §12-8 结论与讨论
    12-8-1 不同情形下动荷系数具有不同的形式
    12-8-2 运动物体突然制动或刹车时的动载荷与动应力
    12-8-3 提高构件疲劳强度的途径
   习题
 附录 型钢规格表
 习题答案
 索引
 参考文献
 Synopsis
 Contents
 主编简介
 Course summary for engineering mechanics
  §1 Engineering mechanics is nearly related with engineering
  §2 Main contents and analysis model of engineering mechanics
   2-1 Main contents of engineering mechanics
   2-2 Two kinds of analysis model of engineering mechanics
  §3 Analysis methods of engineering mechanics
   3-1 Two different kinds of theoretical analysis methods
   3-2 Experimental analysis methods of engineering mechanics
   3-3 Computer analysis methods of engineering mechanics
 Part I Statics
  Chapter 1 Fundamental statics
   §1-1 Force and force moment for a given point
    1-1-1 Concept of force
    1-1-2 Effect and principle of transmissibility of a force in rigid body
    1-1-3 Moment of a force about a point
    1-1-4 Concepts of systems of forces
    1-1-5 The moment of the resultant of several concurrent force theorem
   §1-2 Moment of a couple and its characteristic
    1-2-1 Moment of a couple
    1-2-2 Characteristic of moment of a couple
    1-2-3 System of couples and addition of couples
   §1-3 Constraints and constraint force
    1-3-1 Concepts of constraints and constraint force
    1-3-2 Cable constraint and strap constraint
    1-3-3 Constraint of smooth surface
    1-3-4 Constraint of smooth pin joint
    1-3-5 Constraint of sliding axle and pin-ended axle 止推轴承
   §1-4 Concept of equilibrium
    1-4-1 Equilibrium of two forces and a two-force body
    1-4-2 Equilibrium condition of three forces which are unparallel
    1-4-3 Further Reduction equilibrium systems of forces Theorem
   §1-5 Analysis method and process
    1-5-1 Summary for force analysis
    1-5-2 Examples of applying method of drawing forces diagram
   §1-6 Summary and discussion
    1-6-1 About constraints and constraint force
    1-6-2 About Force Analysis
    1-6-3 About a Two-Force body
    1-6-4 About some principles'applicability
   Problems and exercises
  Chapter 2 Reduction of a system of forces
   §2-1 Concepts of force systems equivalent and reduction
    2-1-1 Principal vector and principal moment
    2-1-2 Concepts of equivalent
    2-1-3 Concepts of Reduction
   §2-2 Foundation of reduction—theorem of translation of force
   §2-3 Reduction of planar forces system
    2-3-1 Reduction solution of planar concurrent forces system and planar couples
    2-3-2 Reduction of general planar forces system to a given co-planar point
    2-3-3 Reduction solution of planar forces system
   §2-4 Constraint forces of fixed end support constraint
   §2-5 Summary and discussion
    2-5-1 Discussion about force vector
    2-5-2 Discussion about reduction solution of planar forces system
    2-5-3 Discussion about actual constraint
   Problems and exercises
  Chapter 3 Statics equilibrium problems
   §3-1 Equilibrium conditions and equations of planar forces system
    3-1-1 Equilibrium conditions and equations of general planar forces system
    3-1-2 Other forms of equilibrium equations of general planar forces system
    3-1-3 Equilibrium equations of planar concurrent forces system and planar couples
   §3-2 Equilibrium problems of simple spatial force system
    3-2-1 Moment of force about an Axis
    3-2-2 Reduction of spatial force system
    3-2-3 Equilibrium conditions of spatial force system
   §3-3 Equilibrium problems of simple rigid body system
    3-3-1 Concepts of statically determinate and statically indeterminate
    3-3-2 Characteristics and solutions of equilibrium problems of rigid body system
   §3-4 Equilibrium problems of the body with friction
    3-4-1 Law of sliding friction
    3-4-2 Equilibrium problems with friction
   §3-5 Summary and discussion
    3-5-1 About selection of axes and center of force moment
    3-5-2 About importance of Force analysis
    3-5-3 Notices about solving Equilibrium Problems of Rigid Body System
    3-5-4 Concepts of Angle of friction and self-locking
   Problems and exercises
 Part II Mechanics of materials
  Chapter 4 Fundamental summary of the mechanics of materials
   §4-1 Basic assumptions of the materials
    4-1-1 Homogenization and continuity assumptionV
    4-1-2 Assumption of isotropy
    4-1-3 assumption of small deformation
   §4-2 External and internal force of elastic bar
    4-2-1 External force
    4-2-2 Internal force and components of internal force
    4-2-3 method of sections
   §4-3 Stress and deformation characteristics of the elastic body
   §4-4 Stress on the cross section of bar
    4-4-1 Concepts of normal stress and shearing stress
    4-4-2 Relations between stress and components of internal force
   §4-5 Normal strain and shearing strain
   §4-6 Stress-strain relationship of linear elastic material
   §4-7 Basic forms of stress and deformation of bar
    4-7-1 Tension or compression
    4-7-2 Shearing
    4-7-3 Torsion
    4-7-4 Plane bending
    4-7-5 Complex loads and deformation
   §4-8 Summary and discussion
    4-8-1 Models of Statics and mechanics of materials
    4-8-2 Application and restriction of statics concepts and principles of rigidbody in the mechanics of materials
   Problems and exercises
  Chapter 5 Axial tension or compression
   §5-1 Axial force and its diagram
   §5-2 Stress and deformation of axially loaded bar
    5-2-1 Stress calculation
    5-2-2 Deformation calculation
   §5-3 Strength calculation
    5-3-1 Criterions of the strength design,safety factor and allowable stress
    5-3-2 Three kinds of strength calculation problems
    5-3-3 Application examples of strength design criterions
   §5-4 Mechanic properties of materials under tension or compression
    5-4-1 Stress-strain curve of materials under tension
    5-4-2 Mechanic properties of ductile materials under tension
    5-4-3 Mechanic properties of brittle materials under tension
    5-4-4 Concept of failure by lost strength and critical stress
    5-4-5 Mechanic properties of materials under compression
   §5-5 Summary and discussion
    5-5-1 Main Summaries of this chapter
    5-5-2 Application conditions of the equations of stress and deformation
   *5-5-3 Stress distribution near the loaded point
   *5-5-4 Concept of the stress concetration
   *5-5-5 Summary of statically indeterminate problem under tension or compression
   Problems and exercises
  Chapter 6 torsion of circular shaft
   §6-1 Circular shaft transfering power in engineering and its torsiondeformation
   §6-2 Torsional moment and torque diagram
    6-2-1 Relations between applied twisting moment,power and rev
    6-2-2 Determination of torsional moment analysis on transverse section ofcircular shaft by sections method
    6-2-3 Positive and negative criterions of torsional moment
    6-2-4 Torque diagram
   §6-3 Equivalent law of shear stress
   §6-4 Torional stress analysis on torsion of circular shaft
    6-4-1 Plane assumption
    6-4-2 Compatibility equation of deformation
    6-4-3 Shearing stress-shearing strain relation in the linear elastic area
    6-4-4 Statics equation
    6-4-5 Expression of shear stress on the transverse section
   §6-5 Strength and stiffness caculation on torsion of circular shaft
    6-5-1 Experiment of torsion of circular shaft and its results
    6-5-2 Strength caculation on torsion of circular shaft
    6-5-3 Stiffness caculation on torsion of circular shaft
   §6-6 Summary and discussion
    6-6-1 Strength and stiffness caculation on torsion of circular shaft and eles
    6-6-2 Shear stress under torsion of rectangular barProblems and exercises
  Chapter 7 Bending strength
   §7-1 Bending elements in engineering
   §7-2 Equations of shear force and bending moment
    7-2-1 Shear force and bending moment on the transverse section of beam bending
    7-2-2 Positive and negative criterions of shear force and bending moment
    7-2-3 Determination of shear force and bending moment on appointed section bythe method of sections
    7-2-4 Equations of shear force and bending moment
   §7-3 Diagrams of shearing force and bending moment
   §7-4 Geometric properties of cross section relating to stress analysis
    7-4-1 Static moment,centroid of an area and their relations
    7-4-2 Moment of interia,second polar moment of area,product of inertia,radiusof gyration
    7-4-3 Parallel-axis theorem of moment of interia and product of inertia
    7-4-4 Rotation-axis theorem of moment of interia and product of inertia
    7-4-5 Principal axial,centroidal axis,principal moment of intertia and centroidaprincipal moment of intertia of an area
   §7-5 Normal stress on the cross section of beam bended in one plane
    7-5-1 Concepts of plane bending and pure bending
    7-5-2 Normal stress analysis on beam's cross section under pure bending
    7-5-3 Application and generalization of the equation of bending normal stress
   §7-6 Examples for the applications of the equation of plane bendingnormal stress
   §7-7 Strength comptutation of beams
    7-7-1 failure criterion of beam
    7-7-2 Conditions of bending strength
    7-7-3 Calculation proceduce of bending strength
   §7-8 Summary and discussion
    7-8-1 Differential relations of bending moment,shear force and density of load
    7-8-2 Some notices on diagram of bending moment and shear force
    7-8-3 Application conditions of the equation of bending normal stress
    7-8-4 Concept of shear stress in bending
    7-8-5 Calculation of shearing and extrusion assumption
    7-8-6 Measures of improving the strength of beams
   Problems and exercises
  Chapter 8 Bending Stiffness
   §8-1 Basic concepts of deformation and displacement of beams
    8-1-1 Deflection curve after bending of beam
    8-1-2 The deflection and angle of rotation of beam
    8-1-3 The displacement of beam is nearly associated with constraint
    8-1-4 Engineering significance of displacement analysis of beam
   §8-2 Differential equation of small deflection of beams and its integration
    8-2-1 Differential equation of small deflection
    8-2-2 Determination of integral constants,constrains conditions and continuityconditions
   §8-3 Superposition method in engineering
    8-3-1 Applications of the method of superposition on multi-loads
    8-3-2 Applications of the method of superposition on intermittent distributed loads
   §8-4 Simple statically indeterminate beam
   §8-5 Bending Stiffness Calculation
    8-5-1 Bending Stiffness conditions
    8-5-2 Examples for Stiffness Calculation
   §8-6 Summary and discussion
    8-6-1 Interdependent relations of deformation and displacement
    8-6-2 About the sleek continuity curve of beam
    8-6-3 Discussion about solution of statically indeterminate problem
    8-6-4 Discussion about characteristic of statically indeterminate structure
    8-6-5 Methods of improving the bending stiffness
   Problems and exercises
  Chapter 9 State of stress and theory of strength
   §9-1 Basic concepts
    9-1-1 What's state of stress?Why research it?
    9-1-2 How to descript state of stress in a single point
    9-1-3 How to establish strength condition under general state of stress
   §9-2 Stress analysis on arbitrary direction under state of stress of plane
    9-2-1 Criterions of positive and negative
    9-2-2 Local infinitesimal balance equation
    9-2-3 Normal stress and shear stress on arbitrary direction under state of stressof plane
   §9-3 Principal stress and maximum shear stress under state of stress
    9-3-1 Principal plane,principal stress and principal direction
    9-3-2 Three principal stresses on state of stress
    9-3-3 Maximum shear force of a plane and maximum shear stress at a single point
   *§9-4 Stress circle method of analysing state of stress
    9-4-1 Equation of stress circle
    9-4-2 Drawing method of stress circle
    9-4-3 Application of stress circle
   §9-5 Stress-strain relation under general state of stress strain energydensity
    9-5-1 Generalization Hooke's law
    9-5-2 Relations of elastic constants of isotropical material
    9-5-3 Strain energy density
    9-5-4 Density of energy of volume change and distortional strain energy density
   §9-6 Strength condition under general state of stress
    9-6-1 First strength theory
   *9-6-2 Second strength theory
    9-6-3 Third strength theory
    9-6-4 Fourth strength theory
   §9-7 Summary and discussion
    9-7-1 Some important conclusions about state of stress
    9-7-2 Most important and basic method of analyzing state of stress-balancemethod
   *9-7-3 Different expressions of state of stress
    9-7-4 Appications of Hook's law
    9-7-5 Several problems should be noticed on applying the theory of strength
   Problems and exercises
  Chapter 10 Strength calculation of transformative bar under the combinationforced
   §10-1 Skew bending
    10-1-1 Loading conditions of skew bending generation
    10-1-2 Determining normal stress on transverse section under skew bending bysuperposition method
    10-1-3 Maximum normal stress and strength conditions
   §10-2 Combination of Axial Tension or Compression and Bending
   §10-3 Combination of bending and torsion
    10-3-1 Simplified schematic of calculation
    10-3-2 Dangerous point and its state of stress
    10-3-3 Strength conditions and design equations
   §10-4 Sketch of strength design of thin-wall cyclindrical container
   §10-5 Summary and discussion
    10-5-1 Discussion of neutral axis
    10-5-2 Process of strength design
   Problems and exercises
  Chapter 11 Stability problem of column
   §11-1 Basic concept of stability of column
    11-1-1 Stability and unstability in Equilibrium State
    11-1-2 Critical state and critical load
    11-1-3 Different critical state of three kinds cloumn
   §11-2 Critical load for slender column—Euler's formula
    11-2-1 Pin-ended slender column
    11-2-2 General Formulas of critical load of other rigid supported slender column
   §11-3 Concept of slenderness ratio,three different kinds of columns
    11-3-1 Concepts of slenderness ratio
    11-3-2 Distinguish from three different kinds of columns
    11-3-3 Formula of critical stress of three kinds of columns
    11-3-4 Diagrams of critical stress and determination of values ofλp、λs
   §11-4 Stability design of columns
    11-4-1 Contents of stability design
    11-4-2 Methods of safety factor and safety conditions of stability
    11-4-3 Process of stability design
   §11-5 Examples for Stability design
   §11-6 Summary and discussion
    11-6-1 Importance of stability design
    11-6-2 Factors affecting bearing capacity of columns
    11-6-3 Main paths of improving bearing capacity of columns
    11-6-4 Some important problems during in the stability design
   Problems and exercises
  Chapter 12 Summary of dynamic load and fatigue strength
   §12-1 Interia force and dynamic stress of element during straight-linemotion with uniform acceleration
   §12-2 Stress analysis and calculation of dynamic stress of rotated element
   §12-3 Calculation of impact load and stress on element
    12-3-1 Basic assumptions on calculation of impact load
    12-3-2 Applications of conservation law of mechanical energy
    12-3-3 Dynamic load factor under impact
   §12-4 Summary of fatigue strength
    12-4-1 Nomenclature of alternative stress
    12-4-2 Charateristics of fatigue failure
   §12-5 Fatigue limit and stress—life curve
   §12-6 Influencing factors on fatigue life
    12-6-1 Effects of stress concetration—effective stress concentration factor
    12-6-2 Effects of component dimension—dimension factor
    12-6-3 Effects of quality of surface processing—surface quality factor
   §12-7 Fatigue strength based on finite-life design
    12-7-1 Concept of element life
    12-7-2 Method of infinite-life design—safety factor method
    12-7-3 Safety factor under symmertical stress cycle with equal amplitude
    12-7-4 Estimation of fatigue life under alternative stress with equal amplitude
   §12-8 Summary and discussion
    12-8-1 Different forms of dynamic load factor under different cases
    12-8-2 Dynamic load and stress of moving body under abruptly braking
    12-8-3 Paths of improving fatigue strength of element
   Problems and exercises
 Appendix Properites of Rolled-Steel Shapes
 Answers
 Index
 Reference
 Synopsis
 Contents
 A Brief Introduction to the Author

Baidu
map