注册 登录 进入教材巡展
#

出版时间:2016-01

出版社:哈尔滨工业大学出版社

以下为《量子机器学习中数据挖掘的量子计算方法(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 哈尔滨工业大学出版社
  • 9787560357591
  • 81868
  • 2016-01
  • O413.1-39
内容简介

  维特克著的《量子机器学习中数据挖掘的量子计算方法(英文版)/国外优秀物理著作原版系列》分三个部分对量子机器学习中数据挖掘的量子计算方法进行了介绍,第一部分对基础概念进行了整体概述,例如,机器学习、量子力学、量子计算等,第二部分介绍了经典的学习算法,第三部分介绍了量子计算与机器学习。这本书综合了广泛的调查研究形成,采用简洁的表达形式,并配以应用、实践的例子。

目录
Preface
Notations
Part One Fundamental Concepts
 1 Introduction
  1.1 Learning Theory and Data Mining
  1.2 Why Quantum Computers?
  1.3 A Heterogeneous Model
  1.4 An Overview of Quantum Machine Learning Algorithms
  1.5 Quantum—Like Learning on Classical Computers
 2 Machine Learning
  2.1 Data—DrivenModels
  2.2 FeatureSpace
  2.3 Supervised and Unsupervised Learning
  2.4 Generalization Performance
  2.5 Model Complexity
  2.6 Ensembles
  2.7 Data Dependencies and Computational Complexity
 3 Quantum Mechanics
  3.1 States and Superposition
  3.2 Density Matrix Representation and Mixed States
  3.3 Composite Systems and Entanglement
  3.4 Evolution
  3.5 Measurement
  3.6 Uncertainty Relations
  3.7 Tunneling
  3.8 Adiabatic Theorem
  3.9 No—Cloning Theorem
 4 Quantum Computing
  4.1 Qubits and the Bloch Sphere
  4.2 QuantumCircuits
  4.3 Adiabatic Quantum Computing
  4.4 QuantumParallelism
  4.5 Grover's Algorithm
  4.6 Complexity Classes
  4.7 Quantum Information Theory
Part Two Classical Learning Algorithms
 5 Unsupervised Learning
  5.1 Principal Component Analysis
  5.2 ManifoldEmbedding
  5.3 K—Means and K—Medians Clustering
  5.4 Hierarchical Clustering
  5.5 Density—BasedClustering
 6 Pattern Recogrution and Neural Networks
  6.1 The Perceptron
  6.2 Hopfield Networks
  6.3 Feedforward Networks
  6.4 Deep Learning
  6.5 Computational Complexity
 7 Supervised Learning and Support Vector Machines
  7.1 K—Nearest Neighbors
  7.2 Optimal Margin Classifiers
  7.3 Soft Margins
  7.4 Nonlinearity and KemelFunctions
  7.5 Least—Squares Formulation
  7.6 Generalization Performance
  7.7 Multiclass Problems
  7.8 Loss Functions
  7.9 Computational Complexity
 8 Regression Analysis
  8.1 Linear Least Squares
  8.2 Nonlinear Regression
  8.3 Nonparametric Regression
  8.4 Computational Complexity
 9 Boosting
  9.1 Weak Classifiers
  9.2 Ada Boost
  9.3 A Family of Convex Boosters
  9.4 Nonconvex Loss Functions
Part Three Quantum Computing and Machine Learning
 10 Clustering Structure and Quantum Computing
  10.1 Quantum Random Access Memory
  10.2 Calculating Dot Products
  10.3 Quantum Principal Component Analysis
  10.4 Toward Quantum Manifold Embedding
  10.5 QuantumK—Means
  10.6 QuantumK—Medians
  10.7 Quantum Hierarchical Clustering
  10.8 Computational Complexity
 11 Quantum Pattern Recognition
  11.1 Quantum Associative Memory
  11.2 The Quantum Perceptron
  11.3 Quantum Neural Networks
  11.4 Physical Realizations
  11.5 Computational Complexity
 12 Quantum Classification
  12.1 Nearest Neighbors
  12.2 Support Vector Machines with Grover's Search
  12.3 Support Vector Machines with Exponential Speedup
  12.4 Computational Complexity
 13 Quantum Process Tomography and Regression
  13.1 Channel—State Duality
  13.2 Quantum Process Tomography
  13.3 Groups, Compact Lie Groups, and the Unitary Group
  13.4 Representation Theory
  13.5 Parallel Application and Storage of the Unitary
  13.6 Optimal State for Learning
  13.7 Applying the Unitary and Finding the Parameter for the Input State
 14 Boosting and Adiabatic Quantum Computing
  14.1 Quantum Annealing
  14.2 Quadratic Unconstrained Binary Optimization
  14.3 Ising Model
  14.4 QBoost
  14.5 Nonconvexity
  14.6 Sparsity, Bit Depth, and Generalization Performance
  14.7 Mapping to Hardware
  14.8 Computational Complexity
Bibliography
Baidu
map