注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2015-12-16

出版社:高等教育出版社

以下为《肿瘤靶向诊治纳米材料(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040429244
  • 1版
  • 81761
  • 46255108-6
  • 精装
  • 特殊
  • 2015-12-16
  • 500
  • 395
  • 医学
  • 临床医学
  • 材料类
  • 研究生及以上
作者简介

谭明乾, 男,1974年生,理学博士,副研究员,中国科学院大连化学物理研究所“百人计划”引进人才。2005年获中科院大连化学物理研究所分析化学理学博士学位。2006-2007年赴加拿大维多利亚大学从事博士后研究,2007-2010年赴美国犹他大学及凯斯西储大学,从事荧光/磁共振分子探针和分子影像学的研究工作。曾作为研究骨干多次参加国家自然科学基金、中科院领域前沿项目基金、加拿大创新基金和美国国家癌症研究所基金等项目的研究工作。在纳米发光材料、特异性小分子多肽、树状大分子药物载体、靶向磁共振分子探针、动物活体分子成像等领域积累了多年的研究经验。初步建立了基于纳米稀土发光材料/荧光生物探针,到靶向分子成像技术的研究体系。2004年被授予中国科学院院长优秀奖。共发表SCI收录论文27篇,国际会议10次,共被引用600余次,申请国内外发明专利18项,其中美国专利2项,撰写专业学术著作3章。其中有关前列腺癌肿瘤靶向成像的工作最近入选Faculty of 1000,并被列为在生物和医学方面前2%的工作。

查看全部
内容简介

本书是作者根据多年来从事肿瘤靶向诊治纳米材料的研究成果并结合国内外相关领域发展而撰写的一部学术专著。全书以多功能纳米材料的制备、应用为主线,全面、系统地介绍了磁性纳米材料、半导体量子点材料、介孔硅纳米材料、聚合物纳米材料、碳基纳米材料、金纳米材料、稀土上转换纳米材料、生物仿生多肽及树状分子等功能性纳米材料在肿瘤及生物医学成像、诊断和靶向治疗一体化方面的应用,并结合相关的研究前沿展望了其发展趋势。书中着重从基础科学的角度理解功能性纳米材料及其应用,目的是使研究者,尤其是初学者,阅读本书后能够对功能性纳米材料在生物医学诊治,尤其是在肿瘤的靶向诊疗一体化方面有一个比较全面的认识,进而掌握并拓展其应用领域。期望本书能够加深读者对肿瘤的靶向有效诊治及个性化诊疗的兴趣,引发更深入的探究。

本书可供影像学、医学工程、化学、材料及临床医学等领域,尤其是从事纳米生物、纳米医学、临床影像学等领域的科技工作者和工程技术人员参考,也可供高等院校、科研院所等相关专业的教师和研究生参考。

目录

 Front Matter
 Chapter 1 Nanomaterials as Therapeutic/Imaging Agent Delivery
  Vehicles for Tumor Targeting Theranostics
  Mingqian Tan, Yanfang Wang, Xiaojie Song, and Yaqi Wu
  1.1 Introduction
  1.2 Strategies for Nanomaterials as Delivery Vehicles for Tumor Theranostics
  1.3 Targeting Effects of Nanomaterials
  1.3.1 Passive Targeting
  1.3.2 Active Targeting
  1.4 Multifunctional Theranostic Systems
  1.4.1 Medical Imaging Modalities
  1.4.2 Magnetic Nanomaterials
  1.4.3 Quantum Dots
  1.4.4 Mesoporous Silica Nanoparticles
  1.4.5 SERS Gold/Silver Nanomaterials
  1.4.6 Polymeric Nanosystems
  1.4.7 Carbon Nanomaterials
  1.4.8 Lipopolyplex Nanoparticles
  1.4.9 Nano/Microbubbles
  1.4.10 Upconversion Nanomaterials
  1.4.11 Protein Nanomaterials
  1.5 Conclusions and Future Perspective
  Acknowledgments
  References
 Chapter 2 Basics of Theranostics in Tumor
  Huichao Zou, Yaohua Liu, and Shiguang Zhao
  2.1 Introduction
  2.2 Nanoplatforms
  2.3 Nanoprobes
  2.4 Nanocarriers
  2.5 Nanodiagnostics
  2.6 Safety Issues and Future Direction
  References
 Chapter 3 Magnetic Nanomaterials for Tumor Targeting Theranostics
  Leyong Zeng, Zheyu Shen, and Aiguo Wu
  3.1 Introduction
  3.2 Paramagnetic Nanomaterials for Theranostics
  3.2.1 Introduction to Magnetic Resonance Imaging and Paramagnetic Nanomaterials
  3.2.2 Synthesis of Paramagnetic Nanomaterials
  3.2.3 Paramagnetic Nanomaterials for Tumor Targeting Diagnosis
  3.2.4 Paramagnetic Nanomaterials for Tumor Targeting Theranostics
  3.2.5 Overview
  3.3 Superparamagnetic Nanomaterials for Theranostics
  3.3.1 Introduction to Superparamagnetic Nanomaterials
  3.3.2 Synthesis of Superparamagnetic Nanomaterials
  3.3.3 Superparamagnetic Nanomaterials for Bioimaging
  3.3.4 Superparamagnetic Nanomaterials for Theranostics
  3.3.5 Overview
  3.4 Outlook
  Acknowledgments
  References
 Chapter 4 Quantum Dots (QDs) for Tumor Targeting Theranostics
  Yufei Ma, He Shen, Mengxin Zhang, and Zhijun Zhang
  4.1 Introduction
  4.1.1 Fluorescence of QDs
  4.1.2 History of QDs and Their Biomedical Applications
  4.2 Synthesis, Modification and Functionalization of QDs
  4.2.1 Synthesis of QDs
  4.2.2 Surface Modification
  4.2.3 Functionalization
  4.3 QDs for Bioimaging
  4.3.1 In Vitro Imaging
  4.3.2 In Vivo Imaging
  4.3.3 Cancer Imaging
  4.4 QDs for Theranostics
  4.4.1 QDs for Gene Delivery
  4.4.2 QDs for Drug Delivery
  4.4.3 QDs for Photodynamic Therapy
  4.5 Biosafety of QDs
  4.5.1 Cellular Uptake Mechanisms of QDs
  4.5.2 Cytotoxicity of QDs
  4.5.3 In Vivo Fate and Toxicity of QDs
  4.6 Outlook
  References
 Chapter 5 Mesoporous Silica Nanoparticles (MSNs) for Cancer Theranostics
  Yu Hsia, Maharajan Sivasubramanian, Nai-Tzu Chen, and Leu-Wei Lo
  5.1 Traditional Nanocarriers and Current Challenges
  5.2 Design of MSNs
  5.2.1 Why Use MSNs?
  5.2.2 Synthesis
  5.2.3 Surface Modification
  5.2.4 Cellular Uptake/Exocytosis/Biocompatibility/Biodistribution
  5.3 MSNs as a Drug Carrier
  5.3.1 Anticancer Drugs Delivery
  5.3.2 Cargo Release
  5.4 MSNs as Theranostic Agents
  5.4.1 Diagnostic Applications of MSNs
  5.4.2 Therapeutic Applications of MSNs
  5.4.3 Gene Delivery System
  5.5 Multifunctional Design of MSNs
  5.5.1 Hybrid Materials
  5.5.2 Core-shell Particles
  5.5.3 Multifunctional MSNs
  5.6 Future Perspective
  References
 Chapter 6 Surface Enhanced Raman Scattering (SERS)Nanoprobes as Cancer Theranostics
  Meikun Fan
  6.1 Introduction
  6.1.1 Raman Scattering
  6.1.2 Resonance Raman Scattering
  6.1.3 Localized Surface Plasmons and SERS
  6.2 Development of NPs Based SERS Probe
  6.2.1 SERS NPs Made of Single Pure Plasmon Supporting Metals
  6.2.2 Bimetallic SERS NPs
  6.2.3 Dielectric-metal Complex SERS NPs
  6.2.4 NPs Decorated Carbon Material as SERS Probe
  6.2.5 Other SERS Probes
  6.3 SERS Theranostics
  6.3.1 Advantages of SERS Theranostics
  6.3.2 Encoding of SERS Nanoprobes and Modification for Targeting Bio-analytes
  6.3.3 SERS Theranostics: Current State
  6.4 Limitation and Future Development
  References
 Chapter 7 Polymeric Nanosystems for Targeted Theranostics
  Yongyong Li, Huiyun Wen, Haiqing Dong, Aijun Shen,Tianbin Ren, and Donglu Shi
  7.1 Introduction
  7.2 Merits of Polymeric Nanosystem
  7.2.1 Potential Biocompatibility
  7.2.2 Easy Functionality
  7.2.3 Passive and Active Targeting
  7.3 Polymer Entities for Nanosystem Design
  7.3.1 PEG Derivatives
  7.3.2 Polypeptide
  7.3.3 Biopolymer
  7.4 Polymeric Nanosystems for Theranostics
  7.4.1 Polymeric Theranostics for MRI and Drug Delivery
  7.4.2 Polymeric Theranostics for US Imaging and Drug Delivery
  7.4.3 Polymeric Theranostics for Optical Imaging and Drug Delivery
  7.4.4 Polymeric Theranostics for Dual-imaging and Drug Delivery
  7.5 Perspectives and Concluding Remarks
  References
 Chapter 8 Carbon Nanomaterials for Tumor Targeting Theranostics
  Jo˜ao M. M. Leit˜ao, Eliana F. C. Sim˜oes, and Joaquim C. G. Esteves da Silva
  8.1 Introduction
  8.2 Tumor Theranostic Applications of Carbon Nanomaterials
  8.2.1 Tumor Theranostics Applications of Carbon Nanotubes
  8.2.2 Tumor Theranostics Applications of Graphene
  8.2.3 Tumor Theranostics Applications of Carbon Dots
  8.2.4 Tumor Theranostics Applications of Fullerene
  8.2.5 Tumor Theranostics Applications of Nanodiamonds
  8.3 Future Perspectives
  Acknowledgments
  References
 Chapter 9 Lipopolyplex Nanoparticles for Tumor Targeting Theranostics
  Fengying Dai and Xin Zhang
  9.1 Introduction
  9.2 Nonviral Gene Vectors
  9.2.1 Cationic Liposomes
  9.2.2 Cationic Polymers
  9.2.3 In Vivo Barriers to Cationic Nonviral Gene Delivery
  9.3 Tumor Targeting Nonviral Gene Therapeutic
  9.3.1 Inactive Target
  9.3.2 Specific Target Gene Delivery
  9.3.3 Stimuli-sensitive Gene Delivery
  9.4 Agents Combined Imaging and Gene Delivery
  9.4.1 Optical Imaging
  9.4.2 Magnetic Resonance Imaging (MRI)
  9.4.3 Positron Emission Tomography (PET)
  9.5 Summary
  References
 Chapter 10 Microbubbles for Tumor Targeting
  Theranostics
  Daming Yong, Xuejing Wang, Lei Wang, and Xiaojun Han
  10.1 Introduction
  10.2 The Preparation of Microbubbles
  10.2.1 Shell Materials
  10.2.2 Microbubble Fabrication
  10.2.3 Methods of Loading the Therapeutic Agent
  10.3 Application of Microbubbles for Tumor Targeting Theranostics
  10.3.1 Microbubble-based Molecular Ultrasound Imaging of Tumor
  10.3.2 Microbubbles for Drug Delivery
  10.3.3 Microbubbles for Gene Delivery
  10.4 Future Aspects
  References
 Chapter 11 Upconversion Nanomaterials for Tumor Targeting Theranostics
  Wei Wang
  11.1 Introduction
  11.2 Upconversion Nanomaterials for Tumor Imaging
  11.2.1 Upconversion Fluorescent Imaging
  11.2.2 Fluorescent-MRI/CT/PET Multi-model Imaging
  11.3 Tumor Photodynamic Therapy
  11.3.1 Mechanism of Photodynamic Therapy
  11.3.2 Applications of Upconverting Nanoparticles in Photodynamic Therapy
  11.4 Drug/Gene Delivery
  11.5 Dye Sensitized Efficiency of UC
  11.6 Conclusions
  References
 Chapter 12 Functional Dendrimers as Nanoscale Theranostic Vehicles for Cancer Treatment
  Kui Luo and Zhongwei Gu
  12.1 Introduction
  12.2 Dendrimers for Cancer Diagnosis and Therapy
  12.3 Functional Dendrimers as Theranostic Nanoscale Vehicles for Cancer Treatment
  12.3.1 Dendrimer Based Photodynamic Therapy
  12.3.2 Dendrimer/Magnetic Nanoparticle Hybrid Nanoparticles
  12.3.3 Gadolinium(III)-labeled Dendrimers Based Drug Delivery Vehicles
  12.4 Functional Dendrimers Labeled with Optical Probes as Drug Delivery Vehicles
  12.5 Conclusions
  References
 Chapter 13 Protein-based Nanoparticles for Tumor Targeting Theranostics
  Yang Liu, Hao Wu, and Huihui Wang
  13.1 Introduction
  13.2 Albumin Nanoparticles for Tumor Targeting Theranostics
  13.2.1 Albumin Nanoparticles
  13.2.2 Preparation Techniques for Albumin Nanoparticles
  13.2.3 Albumin Nanoparticles for Anti-tumor Drug Targeted Delivery
  13.2.4 Albumin Nanoparticles for Targeted Tumor Imaging
  13.2.5 Albumin Nanoparticles for Photodynamic Therapy
  13.3 Outlook
  Acknowledgments
  References
 Chapter 14 Conclusions and Future Perspectives
  Shanmin Gao and Narayan S. Hosmane
  14.1 Topical Background and Conclusions
  14.1.1 Magnetic Nanomaterials
  14.1.2 Semiconductor Quantum Dots (QDs)
  14.1.3 Mesoporous Silica Nanoparticles (MSNs)
  14.1.4 Surface Enhanced Raman Scattering (SERS)
  14.1.5 Polymeric Nanostructures
  14.1.6 Carbon Nanomaterials
  14.1.7 Lipoplexes and Polyplexes Nanoparticles
  14.1.8 Nano/Microbubbles Technology
  14.1.9 Upconversion Nanomaterials
  14.1.10 Functional Polymeric Dendrimers
  14.1.11 Protein-based Nanoparticles
  14.2 Future Perspectives of Theranostics
 Abbreviation Index
 Color Figures

Baidu
map