- 高等教育出版社
- 9787040295658
- 1
- 70402
- 44214053-9
- 平装
- 16开
- 2010-06-10
- 480
- 400
- 理学
- 数学
本书包括70个微积分探究性和应用性课题,这些课题背景丰富,内容新颖,结果深刻有趣。 对各课题不过分强调技巧难度,都可以从不同层次进行探讨。对每个课题都在设置情境后,提出中心问题,让读者围绕它自主探究。书中采用问题串的形式,给读者以启发、引导,帮助他们明晰探究思路。 每个课题都附有详尽的解答,并设置了思考题,供读者思考、探究。
本书可作为高等学校理工科专业微积分课程的探究性学习用书,也可供大学本科学生撰写论文时参考使用。
微机分课题
1.抛物线的割线和切线的平行性问题
2.光的反射定律的原理
3.新的导数———*-导数和分数阶导数
4.最短的折痕
5.萨拉米(Salami)曲线
6.“视角”最大的指数函数
7.怎样使产品的批量生产和产品的订购量最经济
8.围栏的优化问题
9.罐头外壳的设计
10.最小平均成本
11.利润最大化基本法则
12.需求的价格弹性
13.锥体的最值问题
14.梯子问题
15.洛必达的滑轮问题
16.赫尔莱(Helley)射击准则
17.从塔上射弹,仰角多少射得最远
18.抛物线的切线交点的性质
19.泰勒级数在狭义相对论中的应用
20.列积分法
21.积分∫trdt(r∈R)中的例外∫1/tdt
22.二阶导数为零的点
23.三次函数拐点的特殊性质
24.球体的浮力问题
25.曲线与切线之间面积的最小化问题
26.从弧长与弦长之比来看“以直代曲”
27.抛物线弓形的最小值问题
28.心输出量的测定
29.由定积分导出的平均值之间的不等关系
30.对数函数曲线的割线的性质
31.梯形法误差估计式的证明
32.辛普森公式对三次函数精确吗?
33.搅拌槽问题
34.碳-14年龄测定法
35.牛顿冷却定律
36.饮食模型
37.大湖污染净化的模型
38.曳物线
39.等速下降曲线
40.悬链线
41.用微分方程表述圆锥曲线
42.物体上抛时上升快还是下降快?
43.球体、球壳、圆柱体、空心圆柱体中哪个滚得快?
44.伽利略实验的数学模型
45.牛顿法迭代过程的收敛性与稳定性
46.累次指数
47.药的用量模型
48.广义几何数列
N(N=2,3,…)的级数展开
50.欧拉常数
51.沃利斯(Wallis)积
52.极限limx→0sinx/x=1能推广到二元函数去吗?
53.具有“面积不变性”的函数
54.柯布道格拉斯(Cobb-Douglas)生产函数
55.泊肃叶(Poiseuille)定律在医学上的应用
56.血液流动中有关供氧量和血流量的问题
57.方向导数在二元函数极值判定中的应用
58.金属线的分割问题
59.帕波斯(Pappus)定理
60.由y=xn和y=nx所围区域的质心
61.仿射函数的平均值
62.逻辑斯蒂增长模型
63.传染病传播的数学模型
64.离散的逻辑斯蒂增长模型(与混沌)
65.离散动态系统
66.开普勒(Kepler)定律的证明
67.弹性杆与δ函数
68.弹性梁与样条函数
69.热传导问题
70.傅里叶级数与傅里叶变换
附录1 追逐线
附录2 ln k的级数展开式
附录3 能量积分
附录4 矩阵的三角分解
思考题提示
参考文献