注册 登录 进入教材巡展
#

出版社:化学工业出版社

以下为《分离工程(英文版) Separation Engineering(徐东彦)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 化学工业出版社
  • 9787122129109
  • 01
  • 47637
  • ①TQ028
  • 本科
  • 本科
作者简介
目录
Chapter 1 Separation Processes
 1.1 Characteristics of separation process and separation
factor
 1.1.1 Characteristics of separation process
 1.1.2 Separation factor
 1.2 Classifications of separation process
 1.3 Selection of separation processes
 1.4 Industrial chemical processes
 Words
 Notes
 Problems
 References
Chapter 2 Foundation of Multicomponent, Multistage
 Separations
 2.1 Degree of freedom and design variables
 2.1.1 General description
 2.1.2 Design and control degrees of freedom
 2.1.3 Phase rule and the degree of freedom analysis of
processes
 2.2 Calculation of phase equilibrium
 2.2.1 Phase equilibrium
 2.2.2 Phase equilibrium data
 2.2.3 Calculations of vapor–liquid equilibrium
 2.3 Multicomponent bubble- and dew-point calculations
 2.4 Single stage equilibrium calculations
 2.4.1 Determination of phase conditions for a mixture and types of
flash
 distillation calculations
 2.4.2 Isothermal flash
 2.4.3 Adiabatic flash
 2.5 Batch distillation
 2.5.1 Introduction
 2.5.2 Unconventional column configurations
 2.5.3 Batch distillation optimization
 2.6 Steam distillation
 2.7 Continuous distillation
 Words
 Notes
 Problems
 References
Chapter 3 Multicomponent, Multistage Separations
 3.1 Multicomponent distillation
 3.1.1 Key components
 3.1.2 Complex of multicomponent distillation
 3.2 Fenske-Underwood-Gilliland shortcut method
 3.2.1 Material balance method of sharp separation
 3.2.2 Fenske equation for minimum equilibrium stages
 3.2.3 Underwood formula for minimum reflux ratio
 3.2.4 Gilliland correlation for actual reflux ratio and
theoretical stages
 3.2.5 Feed-stage location
 3.3 Azeotropic distillation
 3.3.1 Azeotropism
 3.3.2 Characteristics of azeotrope
 3.3.3 Azeotropic distillation processes
 3.3.4 Azeotropic distillation using an entrainer
 3.4 Extractive distillation
 3.4.1 Introduction
 3.4.2 Principles of extractive distillation
 3.4.3 Analysis of extractive distillation process
 3.5 Salt distillation
 Words
 Notes
 Problems
 References
Chapter 4 Gas Absorption and Stripping
 4.1 Introduction
 4.2 Gas-liquid equilibrium
 4.2.1 Equilibrium of physical absorption
 4.2.2 Equilibrium of chemical absorption
 4.3 Absorption and stripping process
 4.3.1 Introduction of absorption and stripping process
 4.3.2 Analysis of multicomponent absorption and stripping
process
 4.4 Shortcut calculation of multicomponent absorption and
stripping process
 4.4.1 Basic conception of absorption process calculation
 4.4.2 Absorption factor method
 4.4.3 Stripping factor method
 Words
 Notes
 Problems
 References
Chapter 5 Rigorous Methods for Multicomponent, Multistage
 Separations
 5.1 Theoretical model for an equilibrium stage
 5.1.1 Physical model of complex distillation column
 5.1.2 Theoretical model of equilibrium stage
 5.2 General strategy of mathematical solution
 5.3 Equation-tearing procedures
 5.3.1 Tridiagonal-matrix algorithm
 5.3.2 Bubble-point (BP) method
 5.3.3 Sum-rates (SR) method
 5.3.4 Simultaneous-correction method
 5.4 Stage-by-stage method
 5.4.1 Starting point of calculation
 5.4.2 Calculation at constant molar overflow
 5.4.3 Determination of feed stage and the criteria for the end of
calculation
 5.4.4 Calculation at varying molar overflow
 Words
 Notes
 Problems
 References
Chapter 6 Efficiency and Energy Saving in Distillation
 Process
 6.1 Efficiency
 6.1.1 Types of plate efficiency
 6.1.2 Factors impacting efficiency
 6.1.3 Efficiency calculation methods
 6.1.4 Overall efficiency evaluation of commercial distillation
columns
 6.2 Minimum work of separation process
 6.2.1 General description
 6.2.2 Minimum work of separation
 6.2.3 Nonisothermal separation and available energy
 6.2.4 Net work consumption and thermodynamic efficiency
 6.3 Energy saving in distillation process
 6.3.1 Thermodynamic analysis of separation process
 6.3.2 Distillation with intermediate condenser and reboiler
 6.3.3 Multi-effect distillation
 6.3.4 Heat pump
 6.4 Distillation sequencing
 6.4.1 Distillation sequencing using simple columns
 6.4.2 Practical constraints restricting options
 6.4.3 Choice of sequence for simple nonintegrated distillation
columns
 6.4.4 Distillation sequencing using columns with more than two
products
 6.5 Synthesis of separation processes by case-based
reasoning
 6.5.1 Selection of single separations
 6.5.2 Synthesis of azeotropic separations
 6.5.3 Synthesis of separation sequences
 6.5.4 Combined operations
 6.5.5 Examples on azeotropic separation
 6.6 Design and optimization of thermally coupled distillation
schemes
 6.7 Energy efficiency of an indirect, thermally coupled
distillation sequence
 Words
 Notes
 Problems
 References
Chapter 7 Other Separation Methods
 7.1 Adsorption
 7.1.1 Adsorbents
 7.1.2 Fundamentals of adsorption equilibria
 7.1.3 Theories of adsorption equilibria
 7.1.4 Processes and cycles
 7.1.5 Application in carbon dioxide separation
 7.2 Ion exchange
 7.2.1 Structure of ion exchange resins
 7.2.2 Principles of ion exchange processes
 7.2.3 Type of ion exchange resins
 7.2.4 Application of ion exchange resins
 7.2.5 Regeneration of ion exchange resins
 7.3 Liquid-liquid extraction
 7.3.1 Solvent selection
 7.3.2 Extractor design
 7.3.3 Liquid-liquid extraction equipment
 7.3.4 Supercritical fluid extraction
 7.4 Reactive distillation
 7.4.1 Introduction
 7.4.2 Basic of reactive distillation
 7.4.3 Available commercial catalytic packings and homogeneous
internals
 7.4.4 Barriers to commercial implementation
 7.4.5 Computational methods
 7.4.6 Application
 7.5 Membrane separation
 7.5.1 Introduction
 7.5.2 Membranes for gas separation
 7.5.3 Membranes for liquid separation
Words
Notes
Problems
References
Baidu
map