注册 登录 进入教材巡展
#
  • #

出版时间:2006-10

出版社:高等教育出版社

以下为《计算机模拟方法在物理学中的应用(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040199550
  • 1版
  • 20616
  • 46250203-0
  • 平装
  • 异16开
  • 2006-10
  • 1330
  • 796
  • 理学
  • 物理学
  • O4-39
  • 物理类
  • 本科 研究生及以上
内容简介

本书是在美国大学使用很广泛的一本经典的,讲解如何使用计算机进行物理学数字模拟的教材,该书为刚刚出版的第三版。该书不是简单的物理学研究中的数学方法的介绍,而更注重使用计算机模拟物理学问题中帮助学生更深刻的理解物理学,帮助学生在学习中了解和掌握使用计算机做物理学研究的一些基本手段,并学会如何根据具体的物理问题选择相应的研究方法。此外,还通过对具体的例子的讲解也为学习物理学的学生介绍了物理学广阔的应用天地。

同前两版版相比,第三版中的程序全部使用Java语言来编写,具有非常好的平台兼容性,实用性强。由于该书是通过计算机模拟讲解物理,因此对计算机编程的基础要求不高,读者都能在课程学习的过程中学习和掌握编程的工具及方法。除覆盖物理学的基本内容,例如光学、电动力学、相对论、刚体运动、量子力学等,该教材还涉及了物理学的一些比较前沿的领域,例如随机行走、混沌、分形、多粒子体系、复杂理论等,开阔了读者使用教材中介绍的方法的视野。

本书可作为高等学校物理类专业或其它理工类专业计算物理课程的教材或参考书,对于相关学科的研究人员也是一本有用的参考书。

目录

 1 Introduction
  1.1 ImportanceofComputersinPhysics
  1.2 TheImportanceofComputerSimulation
  1.3 ProgrammingLanguages
  1.4 Object-OrientedTechniques
  1.5 HowtoUsethisBook
  AppendixIA:LaboratoryReports
 2 ToolsforDoingSimulations
  2.1 Introduction
  2.2 SimulatingFreeFall
  2.3 GettingStartedwithObject-OrientedProgramming
  2.4 Inheritance
  2.5 TheOpenSourcePhysicsLibrary
  2.6 AnimationandSimulation
  2.7 Model-View-Controller
  Appendix2A:ComplexNumbers
 3 SimulatingParticleMotion
  3.1 ModifiedEulerAlgorithms
  3.2 Interfaces
  3.3 Drawing
  3.4 SpecifyingtheStateofaSystemUsingArrays
  3.5 TheODEInterface
  3.6 TheODESolverInterface
  3.7 EffectsofDragResistance
  3.8 Two-DimensionalTrajectories
  3.9 DecayProcesses
 *3.10 VisualizingThree-DimensionalMotion
  3.11 LevelsofSimulation
  Appendix3A:NumericalIntegrationofNewton'sEquationofMotion
 4 OscillatorySystems
  4.1 SimpleHarmonicMotion
  4.2 TheMotionofaPendulum
  4.3 DampedHarmonicOscillator
  4.4 ResponsetoExternalForces
  4.5 ElectricalCircuitOscillations
  4.6 AccuracyandStability
  4.7 Projects
 5 Few-BodyProblems:TheMotionofthePlanets
  5.1 PlanetaryMotion
  5.2 TheEquationsofMotion
  5.3 CircularandEllipticalOrbits
  5.4 AstronomicalUnits
  5.5 Log-LogandSemilogPlots
  5.6 SimulationoftheOrbit
  5.7 ImpulsiveForces
  5.8 VelocitySpace
  5.9 AMini-SolarSystem
  5.10 Two-BodyScattering
  5.11 Three-BodyProblems
  5.12 Projects
 6 TheChaoticMotionofDynamicalSystems
  6.1 Introduction
  6.2 ASimpleOne-DimensionalMap
  6.3 PeriodDoubling
  6.4 UniversalPropertiesandSelf-Similarity
  6.5 MeasuringChaos
 *6.6 ControllingChaos
  6.7 Higher-DimensionalModels
  6.8 ForcedDampedPendulum
 *6.9 HamiltonianChaos
  6.10 Perspective
  6.11 Projects
  Appendix6A:StabilityoftheFixedPointsoftheLogisticMap
  Appendix6B:FindingtheRootsofaFunction
 7 RandomProcesses
  7.1 OrdertoDisorder
  7.2 RandomWalks
  7.3 ModifiedRandomWalks
  7.4 ThePoissonDistributionandNuclearDecay
  7.5 ProblemsinProbability
  7.6 MethodofLeastSquares
  7.7 ApplicationstoPolymers
  7.8 Diffusion-ControlledChemicalReactions
  7.9 RandomNumberSequences
  7.10 VariationalMethods
  7.11 Projects
  Appendix7A:RandomWalksandtheDiffusionEquation
 8 TeDynamicsofMany-ParticleSystems
  8.1 Introduction
  8.2 TheIntermolecularPotential
  8.3 Units
  8.4 TheNumericalAlgorithm
  8.5 PeriodicBoundaryConditions
  8.6 AMolecularDynamicsProgram
  8.7 ThermodynamicQuantities
  8.8 RadialDistributionFunction
  8.9 HardDisks
  8.10 DynamicalProperties
  8.11 Extensions
  8.12 Projects
  Appendix8A:ReadingandSavingConfigurations
 9 NormalModesandWaves
  9.1 CoupledOscillatorsandNormalModes
  9.2 NumericalSolutions
  9.3 FourierSeries
  9.4 Two-DimensionalFounerSeries
  9.5 FourierIntegrals
  9.6 PowerSpectrum
  9.7 WaveMotion
  9.8 Interference
  9.9 FraunhoferDiffraction
  9.10 FresnelDiffraction
  Appendix9A:ComplexFourierSeries
  Appendix9B:FastFourierTransform
  Appendix9C:PlottingScalarFields
 10 Electrodynamics
  10.1 StaticCharges
  10.2 ElectricFields
  10.3 ElectricFieldLines
  10.4 ElectricPotential
  10.5 NumericalSolutionsofBoundaryValueProblems
  10.6 RandomWalkSolutionofLaplace'sEquation
 *10.7 FieldsDuetoMovingCharges
 *10.8 Maxwell'sEquations
  10.9 Projects
  Appendix10A:PlottingVectorFields
 11 NumericalandMonteCarloMethods
  11.1 NumericalIntegrationMethodsinOneDimension
  11.2 SimpleMonteCarloEvaluationofIntegrals
  11.3 MultidimensionalIntegrals
  11.4 MonteCarloErrorAnalysis
  11.5 NonuniformProbabilityDistributions
  11.6 ImportanceSampling
  11.7 MetropolisAlgorithm
 *11.8 NeutronTransport
  Appendix11A:ErrorEstimatesforNumericalIntegration
  Appendix11B:TheStandardDeviationoftheMean
  Appendix11C:TheAcceptance-RejectionMethod
  Appendix11D:PolynomialsandInterpolation
 12 Percolation
  12.1 Introduction
  12.2 ThePercolationThreshold
  12.3 FindingClusters
  12.4 CriticalExponentsandFiniteSizeScaling
  12.5 TheRenormalizationGroup
  12.6 Projects
 13 FractalsandKineticGrowthModels
  13.1 TheFractalDimension
  13.2 RegularFractals
  13.3 KineticGrowthProcesses
  13.4 FractalsandChaos
  13.5 ManyDimensions
  13.6 Projects
 14 ComplexSystems
  14.1 CellularAutomata
  14.2 Self-OrganizedCriticalPhenomena
  14.3 TheHopfieldModelandNeuralNetworks
  14.4 GrowingNetworks
  14.5 GeneticAlgorithms
  14.6 LatticeGasModelsofFluidFlow
  14.7 OverviewandProjects
 15 MonteCarloSimulationsofThermalSystems
  15.1 Introduction
  15.2 TheMicrocanonicalEnsemble
  15.3 TheDemonAlgorithm
  15.4 TheDemonasaThermometer
  15.5 TheIsingModel
  15.6 TheMetropolisAlgorithm
  15.7 SimulationoftheIsingModel
  15.8 TheIsingPhaseTransition
  15.9 OtherApplicationsoftheIsingModel
  15.10 SimulationofClassicalFluids
  15.11 OptimizedMonteCarloDataAnalysis
 *15.12 OtherEnsembles
  15.13 MoreApplications
  15.14 Projects
  Appendix15A:RelationoftheMeanDemonEnergytotheTemperature
  Appendix1513:FluctuationsintheCanonicalEnsemble
  Appendix15C:ExactEnumerationofthe2x2IsingModel
 16 QuantumSystems
  16.1 Introduction
  16.2 ReviewofQuantumTheory
  16.3 BoundStateSolutions
  16.4 TimeDevelopmentofEigenstateSuperpositions
  16.5 TheTime-DependentSchr6dingerEquation
  16.6 FourierTransformationsandMomentumSpace
  16.7 VariationalMethods
  16.8 RandomWalkSolutionsoftheSchr6dingerEquation
  16.9 DiffusionQuantumMonteCarlo
  16.10 PathIntegralQuantumMonteCarlo
  16.11 Projects
  Appendix16A:VisualizingComplexFunctions
 17 VisualizationandRigidBodyDynamics
  17.1 Two-DimensionalTransformations
  17.2 Three-DimensionalTransformations
  17.3 TheThree-DimensionalOpenSourcePhysicsLibrary
  17.4 DynamicsofaRigidBody
  17.5 QuaternionArithmetic
  17.6 QuaternionEquationsofMotion
  17.7 RigidBodyModel
  17.8 MotionofaSpinningTop
  17.9 Projects
  Appendix17A:MatrixTransformations
  Appendix17B:Conversions
  18 SeeinginSpecialandGeneralRelativity
  18.1 SpecialRelativity
  18.2 GeneralRelativity
  18.3 DynamicsinPolarCoordinates
  18.4 BlackHolesandSchwarzschildCoordinates
  18.5 ParticleandLightTrajectories
  18.6 Seeing
  18.7 GeneralRelativisticDynamics
 *18.8 TheKerrMetric
  18.9 Projects
 19 Epilogue:TheUnityofPhysics
  19.1 TheUnityofPhysics
  19.2 SpiralGalaxies
  19.3 Numbers,PrettyPictures,andInsight
  19.4 ConstrainedDynamics
  19.5 WhatareComputersDoingtophysics?
 Index

Baidu
map