注册 登录 进入教材巡展
#
  • #

出版时间:2015-03

出版社:清华大学出版社

以下为《人工智能(第2版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 清华大学出版社
  • 9787302383895
  • 2
  • 20089
  • 平装
  • 16开
  • 2015-03
  • 429
  • 263
内容简介
  《人工智能(第2版)》主要阐述人工智能的基本原理、方法和应用技术。全书分为11章,除第1章讨论人工智能概述、第11章讨论人工智能的争论与展望外,其余9章主要按照“基本智能 典型应用 计算智能”三个模块编著:第1模块为人工智能经典的三大基本技术,包括知识表示技术、搜索技术、推理技术;第2模块为人工智能的典型应用领域,包括机器学习、专家系统以及支持向量机;第3模块为典型的计算智能方法,包括神经计算、进化计算等。与第一版相比,增加了专家系统的介绍,其他大多数章节都做了相应的修改、精简或补充。
  本书力求科学化、模块化、实用化,内容由浅入深、循序渐进、条理清晰,让读者在有限的时间内,掌握人工智能的基本原理与应用技术。
  本书可作为计算机、信息处理、自动化和电信等IT相关专业的高年级本科生的“人工智能”课程教材,也可供从事人工智能研究与应用的科技工作者学习参考。
目录
第1章 绪论
1.1 什么是人工智能
1.1.1 智能的定义
1.1.2 人工智能的定义
1.2 人工智能的发展
1.2.1 孕育期
1.2.2 摇篮期
1.2.3 形成期
1.2.4 发展期
1.2.5 实用期
1.2.6 稳步增长期
1.3 人工智能的研究方法
1.3.1 符号主义
1.3.2 连接主义
1.3.3 行为主义
1.4 人工智能的应用领域
1.4.1 机器学习
1.4.2 知识发现和数据挖掘
1.4.3 专家系统
1.4.4 模式识别
1.4.5 自然语言处理
1.4.6 智能决策支持系统
1.4.7 人工神经网络
1.4.8 自动定理证明
1.4.9 机器人学
1.4.10 分布式人工智能与智能体
1.5 小结
习题
第2章 知识表示
2.1 概述
2.1.1 知识与知识表示
2.1.2 知识表示方法
2.2 谓词逻辑表示法
2.2.1 命题逻辑
2.2.2 谓词逻辑
2.3 产生式表示法
2.3.1 产生式可表示的知识种类及其基本形式
2.3.2 知识的表示方法
2.3.3 产生式系统的组成
2.3.4 产生式系统的推理方式
2.3.5 产生式表示法的特点
2.4 语义网络表示法
2.4.1 语义网络的概念及结构
2.4.2 语义网络的基本语义联系
2.4.3 语义网络表示知识的方法及步骤
2.4.4 语义网络知识表示举例
2.4.5 语义网络的推理过程
2.4.6 语义网络表示法的特点
2.5 框架表示法
2.5.1 框架结构
2.5.2 框架表示知识举例
2.5.3 推理方法
2.5.4 框架表示法的特点
2.6 脚本表示法
2.6.1 脚本的定义与组成
2.6.2 用脚本表示知识的步骤
2.6.3 用脚本表示知识的推理方法
2.6.4 脚本表示法的特点
2.7 面向对象的知识表示
2.7.1 面向对象的基本概念
2.7.2 面向对象的知识表示
2.7.3 面向对象方法学的主要观点
2.8 小结
习题
第3章 搜索策略
3.1 引言
3.2 基于状态空间图的搜索技术
3.2.1 图搜索的基本概念
3.2.2 状态空间搜索
3.2.3 一般图的搜索算法
3.3 盲目搜索
3.3.1 宽度优先搜索
3.3.2 深度优先搜索
3.3.3 有界深度搜索和迭代加深搜索
3.3.4 搜索最优策略的比较
3.4 启发式搜索
3.4.1 启发性信息和评估函数
3.4.2 启发式搜索算法A
3.4.3 实现启发式搜索的关键因素和A*算法
3.4.4 迭代加深A*算法
3.4.5 回溯策略和爬山法
3.5 问题规约和与/或图启发式搜索
3.5.1 问题规约
3.5.2 与/或图表示
3.5.3 与/或图的启发式搜索
3.6 博弈
3.6.1 极大极小过程
3.6.2 α-β过程
3.7 小结
习题
第4章 确定性推理
第5章 不确定性推理
第6章 机器学习
第7章 专家系统
第8章 支持向量机
第9章 神经计算
第10章 进化计算
第11章 人工智能的争论与展望
参考文献
Baidu
map