PaddlePaddle Fluid 深度学习入门与实战
¥59.80定价
作者: 潘志宏,王培彬
出版时间:2022-06
出版社:人民邮电出版社
- 人民邮电出版社
- 9787115555397
- 431700
- 2022-06
作者简介
内容简介
本书全面讲解PaddlePaddle Fluid框架在深度学习领域的应用。全书共15章,分别是PaddlePaddle深度学习开发环境的搭建、PaddlePaddle快速入门、线性回归算法实战、卷积神经网络实战、循环神经网络实战、生成对抗网络实战、强化学习实战、模型的保存与使用、迁移学习实战可视化工具Visual DL的使用、自定义图像数据集识别项目实战、自定义文本数据集分类项目实战、动态图的使用、开发具有AI能力的服务器接口、移动端深度学习框架Paddle Lite的项目实战。 本书实例丰富,适合机器学习爱好者、程序员、人工智能方面的从业人员阅读,也可以作为人工智能相关专业的师生用书和相关培训学校的教材。
目录
第 1章 PaddlePaddle深度学习开发环境的搭建
1.1 深度学习与PaddlePaddle
1.2 PaddlePaddle能做些什么
1.3 如何学习本书
1.4 Python的安装
1.5 本地安装PaddlePaddle
1.5.1 Windows操作系统下安装PaddlePaddle
1.5.2 Ubuntu操作系统下安装PaddlePaddle
1.6 PyCharm的使用
1.7 AI Studio平台的使用
1.8 本章小结
第 2章 PaddlePaddle快速入门
2.1 两个小实例让PaddlePaddle跑起来
2.2 PaddlePaddle常量的使用
2.3 PaddlePaddle变量的使用
2.4 本章小结
第3章 PaddlePaddle的HelloWorld——线性回归算法
3.1 迈入PaddlePaddle实战第 一站
3.2 PaddlePaddle深度学习实战—线性回归算法
3.2.1 深度神经网络模型的搭建
3.2.2 利用房价数据集对深度神经网络模型进行验证
3.3 本章小结
第4章 卷积神经网络实战——MNIST手写数字识别
4.1 图像识别之卷积神经网络模型
4.2 PaddlePaddle CNN模型实战—MNIST手写数字识别
4.3 本章小结
第5章 循环神经网络实战——电影评论数据集的情感分析
5.1 自然语言处理之循环神经网络模型
5.2 PaddlePaddle搭建情感分析项目RNN模型
5.3 利用电影评论数据集对RNN模型进行验证
5.4 本章小结
第6章 生成对抗网络实战——增强数据集
6.1 生成对抗网络
6.2 GAN增强数据集实战—训练GAN模型
6.2.1 创建生成器
6.2.2 创建判别器
6.3 本章小结
第7章 强化学习实战——在游戏反馈中变得更聪明
7.1 强化学习简介
7.2 项目测试游戏Gym的简介
7.3 训练DQN模型——让DQN模型在游戏中不断学习并获得高分
7.4 本章小结
第8章 PaddlePaddle模型的保存与使用
8.1 深度学习模型的保存与使用
8.2 训练模型.
8.3 加载训练模型
8.4 保存训练模型
8.5 使用模型进行预测
8.6 本章小结
第9章 迁移学习实战——花卉类型识别
9.1 迁移学习简介
9.2 迁移学习应用场景分析
9.3 花卉类型识别项目实战—训练模型
9.4 花卉类型识别项目实战—验证模型
9.5 本章小结
第 10章 PaddlePaddle可视化工具Visual DL的使用
10.1 可视化工具的重要性
10.2 PaddlePaddle Visual DL的介绍
10.3 PaddlePaddle Visual DL的安装
10.4 Visual DL的简单用法
10.5 模型训练中使用Visual DL
10.6 本章小结
第 11章 自定义图像数据集识别项目实战——水果识别
11.1 自定义数据集
11.2 项目图像数据集的爬取
11.3 为图像数据集生成图像列表
11.4 定义神经网络模型
11.5 PaddlePaddle读取训练数据
11.6 训练模型
11.7 预测模型
11.8 本章小结
第 12章 自定义文本数据集分类项目实战——新闻标题分类
12.1 自定义文本数据集
12.2 新闻标题分类实战—获取文本数据集
12.3 对爬取数据进行预处理和存储
12.4 定义BiLSTM模型
12.5 读取文本数据集
12.6 训练模型
12.7 预测文本数据.
12.8 本章小结
第 13章 PaddlePaddle动态图的使用
13.1 PaddlePaddle动态图机制.
13.2 搭建动态图模型
13.3 训练动态图模型
13.4 预测模型
13.5 本章小结
第 14章 开发具有AI能力的服务器接口
14.1 具有AI能力的服务器接口
14.2 Python Web开发框架Flask简介
14.3 PaddlePaddle预测服务器接口
14.4 本章小结
第 15章 移动端深度学习框架Paddle Lite的项目实战——水果识别App
15.1 Paddle Lite简介
15.2 安装Paddle Lite
15.2.1 Docker环境搭建
15.2.2 Ubuntu环境搭建
15.2.3 编译Paddle Lite
15.3 优化移动端的深度学习模型
15.4 Android水果识别App的开发
15.5 本章小结
1.1 深度学习与PaddlePaddle
1.2 PaddlePaddle能做些什么
1.3 如何学习本书
1.4 Python的安装
1.5 本地安装PaddlePaddle
1.5.1 Windows操作系统下安装PaddlePaddle
1.5.2 Ubuntu操作系统下安装PaddlePaddle
1.6 PyCharm的使用
1.7 AI Studio平台的使用
1.8 本章小结
第 2章 PaddlePaddle快速入门
2.1 两个小实例让PaddlePaddle跑起来
2.2 PaddlePaddle常量的使用
2.3 PaddlePaddle变量的使用
2.4 本章小结
第3章 PaddlePaddle的HelloWorld——线性回归算法
3.1 迈入PaddlePaddle实战第 一站
3.2 PaddlePaddle深度学习实战—线性回归算法
3.2.1 深度神经网络模型的搭建
3.2.2 利用房价数据集对深度神经网络模型进行验证
3.3 本章小结
第4章 卷积神经网络实战——MNIST手写数字识别
4.1 图像识别之卷积神经网络模型
4.2 PaddlePaddle CNN模型实战—MNIST手写数字识别
4.3 本章小结
第5章 循环神经网络实战——电影评论数据集的情感分析
5.1 自然语言处理之循环神经网络模型
5.2 PaddlePaddle搭建情感分析项目RNN模型
5.3 利用电影评论数据集对RNN模型进行验证
5.4 本章小结
第6章 生成对抗网络实战——增强数据集
6.1 生成对抗网络
6.2 GAN增强数据集实战—训练GAN模型
6.2.1 创建生成器
6.2.2 创建判别器
6.3 本章小结
第7章 强化学习实战——在游戏反馈中变得更聪明
7.1 强化学习简介
7.2 项目测试游戏Gym的简介
7.3 训练DQN模型——让DQN模型在游戏中不断学习并获得高分
7.4 本章小结
第8章 PaddlePaddle模型的保存与使用
8.1 深度学习模型的保存与使用
8.2 训练模型.
8.3 加载训练模型
8.4 保存训练模型
8.5 使用模型进行预测
8.6 本章小结
第9章 迁移学习实战——花卉类型识别
9.1 迁移学习简介
9.2 迁移学习应用场景分析
9.3 花卉类型识别项目实战—训练模型
9.4 花卉类型识别项目实战—验证模型
9.5 本章小结
第 10章 PaddlePaddle可视化工具Visual DL的使用
10.1 可视化工具的重要性
10.2 PaddlePaddle Visual DL的介绍
10.3 PaddlePaddle Visual DL的安装
10.4 Visual DL的简单用法
10.5 模型训练中使用Visual DL
10.6 本章小结
第 11章 自定义图像数据集识别项目实战——水果识别
11.1 自定义数据集
11.2 项目图像数据集的爬取
11.3 为图像数据集生成图像列表
11.4 定义神经网络模型
11.5 PaddlePaddle读取训练数据
11.6 训练模型
11.7 预测模型
11.8 本章小结
第 12章 自定义文本数据集分类项目实战——新闻标题分类
12.1 自定义文本数据集
12.2 新闻标题分类实战—获取文本数据集
12.3 对爬取数据进行预处理和存储
12.4 定义BiLSTM模型
12.5 读取文本数据集
12.6 训练模型
12.7 预测文本数据.
12.8 本章小结
第 13章 PaddlePaddle动态图的使用
13.1 PaddlePaddle动态图机制.
13.2 搭建动态图模型
13.3 训练动态图模型
13.4 预测模型
13.5 本章小结
第 14章 开发具有AI能力的服务器接口
14.1 具有AI能力的服务器接口
14.2 Python Web开发框架Flask简介
14.3 PaddlePaddle预测服务器接口
14.4 本章小结
第 15章 移动端深度学习框架Paddle Lite的项目实战——水果识别App
15.1 Paddle Lite简介
15.2 安装Paddle Lite
15.2.1 Docker环境搭建
15.2.2 Ubuntu环境搭建
15.2.3 编译Paddle Lite
15.3 优化移动端的深度学习模型
15.4 Android水果识别App的开发
15.5 本章小结